已知橢圓的離心率為.橢圓上的點(diǎn)到焦點(diǎn)的最小距離為1. 查看更多

 

題目列表(包括答案和解析)

已知橢圓數(shù)學(xué)公式的離心率為數(shù)學(xué)公式,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線l:x=9于G點(diǎn),直線MB交直線l于H點(diǎn).
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過x軸上的定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)F的最大距離為5;
(1)求橢圓的方程;
(2)設(shè)過右焦點(diǎn)F的直線與橢圓交于A、B兩點(diǎn),且線段AB的中點(diǎn)M在直線l:x=t(t>2)上的射影為N,若,求t的取值范圍.

查看答案和解析>>

已知橢圓的離心率為,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C交于A,B兩點(diǎn),且OA⊥OB(O為坐標(biāo)原點(diǎn)),OH⊥AB于H點(diǎn).試求點(diǎn)H的軌跡方程.

查看答案和解析>>

已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線l:x=9于G點(diǎn),直線MB交直線l于H點(diǎn).
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過x軸上的定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線l:x=9于G點(diǎn),直線MB交直線l于H點(diǎn).
(1)求橢圓C的方程;
(2)試探求是否為定值?若是,求出此定值,若不是說明理由.

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個(gè)“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個(gè)“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點(diǎn),則⊥底面

所以就是與底面所成的角.

,故 ,

與底面所成的角是.……………………………………………3分

如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,則

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點(diǎn),其坐標(biāo)為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當(dāng)直線的斜率存在且不為0時(shí),設(shè),

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點(diǎn)的軌跡方程為.………………………15分

22.(Ⅰ)證明:當(dāng)時(shí),.令,則

遞增;若,遞減,

的極(最)大值點(diǎn).于是

,即.故當(dāng)時(shí),有.………5分

(Ⅱ)解:對求導(dǎo),得

①若,,則上單調(diào)遞減,故合題意.

②若,

則必須,故當(dāng)時(shí),上單調(diào)遞增.

③若,的對稱軸,則必須,

故當(dāng)時(shí),上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價(jià)于

        找一個(gè)使成立,故只需滿足函數(shù)的最小值即可.

        因

,

故當(dāng)時(shí),遞減;當(dāng)時(shí),遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分


同步練習(xí)冊答案