存在.求出符合條件的一個,否則.說明理由. 查看更多

 

題目列表(包括答案和解析)

對于在區(qū)間(0,1)中的任一個常數(shù)a,問是否存在正數(shù)x0使得成立?如果存在,求出符合條件的一個x0;否則說明理由.

查看答案和解析>>

20、設(shè)非空集合S具有如下性質(zhì):①元素都是正整數(shù);②若x∈S,則10-x∈S.
(1)請你寫出符合條件,且分別含有一個、二個、三個元素的集合S各一個;
(2)是否存在恰有6個元素的集合S?若存在,寫出所有的集合S;若不存在,請說明理由;
(3)由(1)、(2)的解答過程啟發(fā)我們,可以得出哪些關(guān)于集合S的一般性結(jié)論(要求至少寫出兩個結(jié)論)?

查看答案和解析>>

設(shè)非空集合S具有如下性質(zhì):①元素都是正整數(shù);②若x∈S,則10-x∈S.
(1)請你寫出符合條件,且分別含有一個、二個、三個元素的集合S各一個;
(2)是否存在恰有6個元素的集合S?若存在,寫出所有的集合S;若不存在,請說明理由;
(3)由(1)、(2)的解答過程啟發(fā)我們,可以得出哪些關(guān)于集合S的一般性結(jié)論(要求至少寫出兩個結(jié)論)?

查看答案和解析>>

設(shè)非空集合S具有如下性質(zhì):①元素都是正整數(shù);②若x∈S,則10-x∈S.
(1)請你寫出符合條件,且分別含有一個、二個、三個元素的集合S各一個;
(2)是否存在恰有6個元素的集合S?若存在,寫出所有的集合S;若不存在,請說明理由;
(3)由(1)、(2)的解答過程啟發(fā)我們,可以得出哪些關(guān)于集合S的一般性結(jié)論(要求至少寫出兩個結(jié)論)?

查看答案和解析>>

設(shè)非空集合S具有如下性質(zhì):①元素都是正整數(shù);②若x∈S,則10-x∈S.
(1)請你寫出符合條件,且分別含有一個、二個、三個元素的集合S各一個;
(2)是否存在恰有6個元素的集合S?若存在,寫出所有的集合S;若不存在,請說明理由;
(3)由(1)、(2)的解答過程啟發(fā)我們,可以得出哪些關(guān)于集合S的一般性結(jié)論(要求至少寫出兩個結(jié)論)?

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個“心”字球的概率是

.………………………………………6分

(Ⅱ)解:

,,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

所以就是與底面所成的角.

,故 ,

與底面所成的角是.……………………………………………3分

如圖,以A為原點建立空間直角坐標系,則

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點,其坐標為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是,

,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當直線的斜率存在且不為0時,設(shè),

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點的軌跡方程為.………………………15分

22.(Ⅰ)證明:當時,.令,則

,遞增;若,遞減,

的極(最)大值點.于是

,即.故當時,有.………5分

(Ⅱ)解:對求導(dǎo),得

①若,,則上單調(diào)遞減,故合題意.

②若

則必須,故當時,上單調(diào)遞增.

③若,的對稱軸,則必須,

故當時,上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價于

        找一個使成立,故只需滿足函數(shù)的最小值即可.

        因,

故當時,,遞減;當時,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分


同步練習(xí)冊答案