故當時.取得最小值-. 查看更多

 

題目列表(包括答案和解析)

函數(shù)在同一個周期內,當 時,取最大值1,當時,取最小值

(1)求函數(shù)的解析式

(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?

(3)若函數(shù)滿足方程求在內的所有實數(shù)根之和.

【解析】第一問中利用

又因

       函數(shù)

第二問中,利用的圖象向右平移個單位得的圖象

再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到的圖象,

第三問中,利用三角函數(shù)的對稱性,的周期為

內恰有3個周期,

并且方程內有6個實根且

同理,可得結論。

解:(1)

又因

       函數(shù)

(2)的圖象向右平移個單位得的圖象

再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到的圖象,

(3)的周期為

內恰有3個周期,

并且方程內有6個實根且

同理,

故所有實數(shù)之和為

 

查看答案和解析>>

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
x=1,a0a1a2a3a4a5=2533,
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.

查看答案和解析>>

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0a1xa2x2a5x5
x=1,a0a1a2a3a4a5=2533
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大小;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

 [番茄花園1] 本題共有2個小題,第一個小題滿分5分,第2個小題滿分8分。

已知數(shù)列的前項和為,且

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項公式,并求出n為何值時,取得最小值,并說明理由。

同理可得,當n≤15時,數(shù)列{Sn}單調遞減;故當n=15時,Sn取得最小值.

 


 [番茄花園1]20.

查看答案和解析>>


同步練習冊答案