當且僅當.即時.數(shù)列為等差數(shù)列.解法二: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)從數(shù)列中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列的一個子數(shù)列.

設(shè)數(shù)列是一個首項為、公差為的無窮等差數(shù)列(即項數(shù)有無限項).

(1)若,成等比數(shù)列,求其公比

(2)若,從數(shù)列中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為的無窮等比子數(shù)列,請說明理由.

(3)若,從數(shù)列中取出第1項、第項(設(shè))作為一個等比數(shù)列的第1項、第2項,試問當且僅當為何值時,該數(shù)列為的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

(本小題滿分16分)從數(shù)列中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列的一個子數(shù)列.

設(shè)數(shù)列是一個首項為、公差為的無窮等差數(shù)列(即項數(shù)有無限項).

(1)若,成等比數(shù)列,求其公比

(2)若,從數(shù)列中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為的無窮等比子數(shù)列,請說明理由.

(3)若,從數(shù)列中取出第1項、第項(設(shè))作為一個等比數(shù)列的第1項、第2項,試問當且僅當為何值時,該數(shù)列為的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足

,

(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>


同步練習冊答案