(Ⅲ)設(shè).若對(duì)任意正整數(shù).當(dāng)時(shí).不等式恒成立.求實(shí)數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù),其中。

(Ⅰ)若,求a的值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)在其定義域上的單調(diào)性;

(Ⅲ)證明:對(duì)任意的正整數(shù),不等式都成立。

 

查看答案和解析>>

設(shè)函數(shù),其中。
(Ⅰ)若,求a的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)在其定義域上的單調(diào)性;
(Ⅲ)證明:對(duì)任意的正整數(shù),不等式都成立。

查看答案和解析>>

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

當(dāng)時(shí),有,當(dāng)時(shí),有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來(lái)源:]

所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn,n∈N*)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)),
(1)求a1,a2,a3;
(2)求出點(diǎn)An(an,0)(n∈N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式;
(3)設(shè),若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-mt+>bn恒成立,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)寫出a2、a3的值(只寫結(jié)果)并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
1
6
bn
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案