得C圓的方程為: 查看更多

 

題目列表(包括答案和解析)

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動(dòng)圓C與圓C1、C2相外切.
(I)求動(dòng)圓C圓心軌跡E的方程;
(II)若直線(xiàn)l過(guò)點(diǎn)(2,0)且與軌跡E交于P、Q兩點(diǎn).
①設(shè)點(diǎn)M(m,0),問(wèn):是否存在實(shí)數(shù)m,使得直線(xiàn)l繞點(diǎn)(2,0)無(wú)論怎樣轉(zhuǎn)動(dòng),都有
MP
MQ
=0成立?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由;
②過(guò)P、Q作直線(xiàn)x=
1
2
的垂線(xiàn)PA、QB,垂足分別為A、B,記λ=
|
PA
|+|
QB
|
|
AB
|
,求λ,的取值范圍.

查看答案和解析>>

已知圓C的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓C的兩條切線(xiàn),切點(diǎn)分別為A,B,直線(xiàn)AB恰好經(jīng)過(guò)橢圓T:
x2
a2
+
y2
b2
(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)是否存在斜率為
1
2
的直線(xiàn)l與曲線(xiàn)C交于P、Q兩不同點(diǎn),使得
OP
OQ
=
5
2
(O為坐標(biāo)原點(diǎn)),若存在,求出直線(xiàn)l的方程,否則,說(shuō)明理由.

查看答案和解析>>

已知圓C的方程為,點(diǎn)A,直線(xiàn)

(1)求與圓C相切,且與直線(xiàn)垂直的直線(xiàn)方程;

(2)O為坐標(biāo)原點(diǎn),在直線(xiàn)OA上是否存在異于A(yíng)點(diǎn)的B點(diǎn),使得為常數(shù),若存在,求出點(diǎn)B,不存在說(shuō)明理由.

 

查看答案和解析>>

已知圓C的方程為,點(diǎn)A,直線(xiàn)
(1)求與圓C相切,且與直線(xiàn)垂直的直線(xiàn)方程;
(2)O為坐標(biāo)原點(diǎn),在直線(xiàn)OA上是否存在異于A(yíng)點(diǎn)的B點(diǎn),使得為常數(shù),若存在,求出點(diǎn)B,不存在說(shuō)明理由.

查看答案和解析>>

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動(dòng)圓C與圓C1、C2相外切.
(I)求動(dòng)圓C圓心軌跡E的方程;
(II)若直線(xiàn)l過(guò)點(diǎn)(2,0)且與軌跡E交于P、Q兩點(diǎn).
①設(shè)點(diǎn)M(m,0),問(wèn):是否存在實(shí)數(shù)m,使得直線(xiàn)l繞點(diǎn)(2,0)無(wú)論怎樣轉(zhuǎn)動(dòng),都有
數(shù)學(xué)公式數(shù)學(xué)公式=0成立?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由;
②過(guò)P、Q作直線(xiàn)x=數(shù)學(xué)公式的垂線(xiàn)PA、QB,垂足分別為A、B,記λ=數(shù)學(xué)公式,求λ,的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案