又∵AB=BC.可求得BC=.以B為原點(diǎn).如圖建立坐標(biāo)系. 查看更多

 

題目列表(包括答案和解析)

如圖,ABCD是邊長(zhǎng)為2的正方形紙片,沿某動(dòng)直線l為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點(diǎn)B都落在邊AD上,記為B';折痕與AB交于點(diǎn)E,以EB和EB’為鄰邊作平行四邊形EB’MB.若以B為原點(diǎn),BC所在直線為x軸建立直角坐標(biāo)系(如下圖):
(Ⅰ).求點(diǎn)M的軌跡方程;
(Ⅱ).若曲線S是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的曲線組成的,等腰梯形A1B1C1D1的三邊A1B1,B1C1,C1D1分別與曲線S切于點(diǎn)P,Q,R.求梯形A1B1C1D1面積的最小值.

查看答案和解析>>

如圖,ABCD是邊長(zhǎng)為2的正方形紙片,沿某動(dòng)直線l為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點(diǎn)B都落在邊AD上,記為B';折痕與AB交于點(diǎn)E,以EB和EB’為鄰邊作平行四邊形EB’MB.若以B為原點(diǎn),BC所在直線為x軸建立直角坐標(biāo)系(如下圖):
(Ⅰ).求點(diǎn)M的軌跡方程;
(Ⅱ).若曲線S是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的曲線組成的,等腰梯形A1B1C1D1的三邊A1B1,B1C1,C1D1分別與曲線S切于點(diǎn)P,Q,R.求梯形A1B1C1D1面積的最小值.

查看答案和解析>>

如圖,ABCD是邊長(zhǎng)為2的正方形紙片,沿某動(dòng)直線為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點(diǎn)B都落在邊AD上,記為;折痕與AB交于點(diǎn)E,以EB和EB’為鄰邊作平行四邊形EB’MB。若以B為原點(diǎn),BC所在直線為x軸建立直角坐標(biāo)系(如下圖):

(Ⅰ).求點(diǎn)M的軌跡方程;

(Ⅱ).若曲線S是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的曲線組成的,等腰梯形的三邊分別與曲線S切于點(diǎn).求梯形面積的最小值.


            

查看答案和解析>>

(2012•河南模擬)如圖,AB是圓O的直徑,以B為圓心的圓B與圓O的一個(gè)交點(diǎn)為P.過(guò)點(diǎn)A作直線交圓O于點(diǎn)Q,交圓B于點(diǎn)M、N.
(1)求證:QM=QN;
(2)設(shè)圓O的半徑為2,圓B的半徑為1,當(dāng)AM=
103
時(shí),求MN的長(zhǎng).

查看答案和解析>>

選修4-1:幾何證明選講

如圖,AB是圓O的直徑,以B為圓心的圓B與圓O的一個(gè)交點(diǎn)為P.過(guò)點(diǎn)A作直線交圓O于點(diǎn)Q,交圓B于點(diǎn)M、N.

(I )求證:QM=QN;

 (II)設(shè)圓O的半徑為2,圓B的半徑為1,當(dāng)AM=時(shí),求MN的長(zhǎng).

 

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案