(2)求證:,(3)求證:DE//平面ABC, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=90°,P、Q分別為DE、AB的中點(diǎn).
(1)求證:PQ∥平面ACD;
(2)求幾何體B-ADE的體積.

查看答案和解析>>

如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F(xiàn)為CD中點(diǎn).

(Ⅰ)求證:EF⊥平面BCD;

(Ⅱ)求二面角C-DE-A的大。

 

查看答案和解析>>

如圖,AE⊥平面ABCAEBD,ABBCCABD=2AE=2,FCD中點(diǎn).

(Ⅰ)求證:EF⊥平面BCD

(Ⅱ)求二面角CDEA的大。

(Ⅲ)求點(diǎn)A到平面CDE的距離.

 

查看答案和解析>>

如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F(xiàn)為CD中點(diǎn).

(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.

查看答案和解析>>

如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=90°,P、Q分別為DE、AB的中點(diǎn).
(1)求證:PQ∥平面ACD;
(2)求幾何體B-ADE的體積.

查看答案和解析>>

一、選擇題:本大題共10個(gè)小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答題:本大題共6個(gè)小題,每小題14分,共84分.

15.(4分)     

由題意得  

16. 有分布列:

0

1

2

3

P

從而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)設(shè)BB1的中點(diǎn)為F,連接EF、DF,則EF是DF在平面BB1C1C上的射影。

     因?yàn)锽B1C1C是正方形,

   

18.(1) 由題意得  

(2)

所以直線的斜率為

,則直線的斜率,                                       

19.(1)由韋達(dá)定理得

是首項(xiàng)為4,公差為2的等差數(shù)列。

(2)由(1)知,則

原式左邊=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x則

故(1)得證。

。2)在R上任取x1,x2,且

 

所以在R上單調(diào)遞增;

。3)

;

;因?yàn)?sub>

所以無(wú)解,即圓心到直線的距離大于或等于半徑2,只需

 

 


同步練習(xí)冊(cè)答案