12.已知成立的最小整數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
1
4x+2
(x∈R)

(Ⅰ)證明f(x)+f(1-x)=
1
2
;
(Ⅱ)若數(shù)列{an}的通項公式為an=f(
n
m
)(m∈N*,n=1,2,…,m)
,求數(shù)列{an}的前m項和Sm;
(Ⅲ)設數(shù)列{bn}滿足:b1=
1
3
,bn+1=
b
2
n
+bn
,設Tn=
1
b1+1
+
1
b2+1
+…+
1
bn+1
,若(Ⅱ)中的Sm滿足對任意不小于2的正整數(shù)n,Sm<Tn恒成立,試求m的最大值.

查看答案和解析>>

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*

(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1,求Tn;
(3)令bn=
1
an-1an
(n≥2)
,b1=3,Sn=b1+b2+…+bn,若Sn
m-2002
2
對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是公比為(
1
2
)d
的等比數(shù)列;
(2)若公差d=1,以點Pn的橫、縱坐標為邊長的矩形面積為cn,求最小的實數(shù)t,若使cn≤t(t∈R,t≠0)對一切正整數(shù)n恒成立;
(3)對(2)中的數(shù)列{an},對每個正整數(shù)k,在ak與ak+1之間插入2k-1個3(如在a1與a2之間插入20個3,a2與a3之間插入21個3,a3與a4之間插入22個3,…,依此類推),得到一個新的數(shù)列{dn},設Sn是數(shù)列{dn}的前n項和,試求S1000

查看答案和解析>>

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列an滿足a1=1,an+1=f(
1
an
),n∈N*

(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求a2n-1-a2n+1及Tn;
(3)令bn=
1
an-1an
(n≥2),b1=1,Sn=b1+b2+…+bn,若Sn
m-2004
2
對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

已知數(shù)列{an},Sn是其前n項的和,且an=7Sn-1-1(n≥2),a1=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
1
log2an
,Tn=bn+1+bn+2+…+b2n,是否存在最小的正整數(shù)k,使得對于任意的正整數(shù)n,有Tn
k
12
恒成立?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個小題,每小題4分,共16分。

13.0.8;(文)0.7

14.

15.;  (文)

16.①③

三、解答題:

17.解:(1)由

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當

       因此,當時,

      

       當,

           12分

18.解:設“中三等獎”為事件A,“中獎”為事件B,

       從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)

   (1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果       3分

   (1)兩個小球號碼相加之和等于4的取法有3種:

   (1,3),(2,2),(3,1)

       兩個小球號相加之和等于3的取法有4種:

   (0,3),(1,2),(2,1),(3,0)   4分

       由互斥事件的加法公式得

      

       即中三等獎的概率為    6分

   (2)兩個小球號碼相加之和等于3的取法有4種;

       兩個小球相加之和等于4的取法有3種;

       兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)

       兩個小球號碼相加之和等于6的取法有1種:(3,3)   9分

       由互斥事件的加法公式得

      

19.解法一(1)過點E作EG交CF于G,

       連結(jié)DG,可得四邊形BCGE為矩形,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因為平面DCF, 平面DCF,

       所以AE//平面DCF   6分

              

               在

              

               M是AE中點,

              

               由側(cè)視圖是矩形,俯視圖是直角梯形,

               得

               平面BCM

               又平面BCM。

        20.解:(1)當時,由已知得

              

               同理,可解得   4分

           (2)解法一:由題設

               當

               代入上式,得     (*) 6分

               由(1)可得

               由(*)式可得

               由此猜想:   8分

               證明:①當時,結(jié)論成立。

               ②假設當時結(jié)論成立,

               即

               那么,由(*)得

              

               所以當時結(jié)論也成立,

               根據(jù)①和②可知,

               對所有正整數(shù)n都成立。

               因   12分

               解法二:由題設

               當

               代入上式,得   6分

              

              

               -1的等差數(shù)列,

              

                  12分

        21.解:(1)由橢圓C的離心率

               得,其中,

               橢圓C的左、右焦點分別為

               又點F2在線段PF1的中垂線上

              

               解得

                  4分

           (2)由題意,知直線MN存在斜率,設其方程為

               由

               消去

               設

               則

               且   8分

               由已知,

               得

               化簡,得     10分

              

               整理得

        * 直線MN的方程為,     

               因此直線MN過定點,該定點的坐標為(2,0)    12分

        22.解:   2分

           (1)由已知,得上恒成立,

               即上恒成立

               又

                  6分

           (2)當時,

               在(1,2)上恒成立,

               這時在[1,2]上為增函數(shù)

                  8分

               當

               在(1,2)上恒成立,

               這時在[1,2]上為減函數(shù)

              

               當時,

               令   10分

               又 

                   12分

               綜上,在[1,2]上的最小值為

               ①當

               ②當時,

               ③當   14分

         


        同步練習冊答案