查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對(duì)任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
(2,2)

查看答案和解析>>

一.選擇題(50分)

  1.B,  2.A,   3.D,   4.B,  5.C,   6.B,  7.A,   8.A,   9.A,   10.C

二.填空題(16分)

  11. 5,     12. 234,     13. ,     14. .

三.解答題(84分)

15(14分)(1) 時(shí), ;------------------------------------------6分

(2) 時(shí), ;

時(shí), ,時(shí), ,

由單調(diào)性易知:時(shí),; -----------------------------------------4分

時(shí), ,又因?yàn)?sub>是偶函數(shù),

由對(duì)稱性易知的值域?yàn)?sub>.--------------------------------------------------4分

16(14分)(1)由解得,----------------------------------------3分

          因?yàn)閿?shù)列各項(xiàng)為正,所以;.--------------------------------3分

   (2) ;----------------------------------------------------4分

      .-------------------------------------------------4分

17(14分)(1) ;------------------------------------------6分

     (2) 的分布列為:

1

2

3

-------------------6分-

 

   所以, -------------------------------------------2分

18.(14分)(1)設(shè)切下來的小正方形邊長為,則,

  因?yàn)?sub>,所以1時(shí);

時(shí),時(shí),所以時(shí)容積最大;即.--------------6分

  (2) 設(shè)第一次切下來的小正方形邊長為,則五個(gè)箱子的容積之和為

  --------------------------------------------------------------4分

  因?yàn)?sub>,顯然不是極值點(diǎn),--------------------------------------2分

  所以要使五個(gè)箱子的容積之和最大, 第一次切下來的小正方形邊長不能為.-------2分

19. (14分)(1) ---------------------------------------------4分

   (2) ,所以,而,

     所以,又顯然成立,所以.---------------5分

   (3)

,-----------------------------2分

所以,故存在最小正整數(shù)使恒成立.--------3分

20.(14分)(1) --------------------------------------------------1分

          而------------------------------------------------------2分

所以, 時(shí), 恒成立, 為增函數(shù);

時(shí), 恒成立, 為增減函數(shù);--------------------------- 2分

(2) 即恒成立,若顯然成立;

,則恒成立,因?yàn)?sub>,所以;

,則恒成立,因?yàn)?sub>,所以;

綜上所述, ---------------------------------------------------------4分

 (3) 法一:上遞增,所以對(duì)于一切

恒成立,此時(shí),所以;---------------------2分

又因?yàn)?sub>,所以---------------------------------------------------2分

綜上所述, 時(shí),數(shù)列遞增.-----------------------------------------------1分

法二: 恒成立-------------------------2分

(證略)-

所以----------------------------------------2分

綜上所述, 時(shí),數(shù)列遞增.-----------------------------------------------1分

 

 

 

 

 

 


同步練習(xí)冊(cè)答案