與的函數(shù)關(guān)系式; 四邊形的面積能取得最大值嗎?如果能,請(qǐng)求出它的最大值,并確定此時(shí)四邊形的形狀. 查看更多

 

題目列表(包括答案和解析)

如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中精英家教網(wǎng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn)
 
(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

如圖,四邊形OABC為直角梯形,A(4,0),B(3,3),點(diǎn)M從點(diǎn)O出發(fā)以每秒2
個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直于X軸于點(diǎn) P,連接AC交NP于點(diǎn)Q,連接MQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)的坐標(biāo)是______;
(2)使線段AQ,QM,MA能圍成三角形的t的取值范圍是______;
(3)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系式;
(4)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn)______(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

如圖,四邊形ABCD為矩形,AB=4,AD=3,動(dòng)點(diǎn)M從D點(diǎn)出發(fā),以1個(gè)單位/秒的速度沿DA向終點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度沿AB向終點(diǎn)B運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)結(jié)束.過點(diǎn)N作NP⊥AB,交AC于點(diǎn)P1連結(jié)MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)請(qǐng)直接寫出PN的長(zhǎng);(用含x的代數(shù)式表示)
(2)試求△MPA的面積S與時(shí)間x秒的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)在這個(gè)運(yùn)動(dòng)過程中,△MPA能否為一個(gè)等腰三角形.若能,求出所有x的對(duì)應(yīng)值;若不能,請(qǐng)說明理由.

查看答案和解析>>

如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4),點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ。

(1)點(diǎn)______(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

一、選擇題

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空題

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答題

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 證明:在中,--2分

分別是的中點(diǎn),∴.   ∴.---------4分

(2) 四邊形是矩形.

證明:∵四邊形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四邊形是平行四邊形.        ------------- 7分

∴四邊形是矩形.     ------------------------------------------------------------- 8分

18.解:過,垂足為,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)證明:在等腰梯形中,,

        --------------------------------------------------1分

,

.                      -------------3分

(2) 解:過分別作,垂足分別為.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原來一天可獲得的利潤(rùn)為 (元)-------2分

(2). ① 由題意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 當(dāng)時(shí),. ----------------------------6分

解這個(gè)方程,得.  ----------------------------------------------------------------8分

 答:出售單價(jià)是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函數(shù)解析式可知:只有點(diǎn)(1,4)和(3,1)在其圖像上,所以,甲獲勝的概率是,即平均每12次才獲勝1次,得10分;而乙獲勝的概率是,即平均每12次獲勝11次,得11分,所以我愿意當(dāng)乙.--------------------- 10分

22.(1) 四邊形是平行四邊形.            ------------------------------1分

證明:.又,..

四邊形是平行四邊形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的證明過程,可知分別是邊長(zhǎng)為的正三角形.

點(diǎn)的距離為.即. -----------------8分,時(shí), 四邊形的面積有最大值是.

此時(shí),重合,, 四邊形是菱形. -------------------------11分

23.解:⑴過點(diǎn)軸,垂足為,由垂徑定理,得的中點(diǎn),

.軸相切于中,

點(diǎn)的坐標(biāo)是.            -----------------2分

設(shè)的解析式為.將兩點(diǎn)的坐標(biāo)代入,得解得所在直線的解析式為         --------------------- 4分

(2) ∵,∴連結(jié).

,∴          -----------------------6分

是直徑,∴

         -------------------------------------------------------------------8分

(3) 判斷:不存在.      ----------------------------------------------------------------- 9分

假設(shè)存在點(diǎn),使為等邊三角形.則.連結(jié),那么.,利用的面積,可得,不與重合, .這與等邊三角形定義矛盾.

假設(shè)不成立.即點(diǎn)不存在. ----------------------------------------------------------- 12分-

 

 

 


同步練習(xí)冊(cè)答案