17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一.選擇題:

1.B  2.D  2.B  3.C   4.C 5. A  6.C   7.B  8.A  9.D  10.D

 

二.填空題:

11.a+b  12.{x|x>2, 或0<x<1} 13.4,或-1  14. 15.120º   16.②④

三.解答題:

17.由題設(shè),得,,雙曲線為,  …… 2分

直線AB的方程為 ,               ………………………  4分

代入到雙曲線方程得:4x2+20ax-29a2=0,           ………………………   6分

,由得:

12=,                         ………………………  9分

解得a2=1,則b2=3,所以為所求!  12分

18.解:(Ⅰ)由題設(shè)可得 f '(x)=3x2+2ax+b,           ………………………  2分

   ∵ f '(x)的圖像過(guò)點(diǎn)(0,0),(2,0)

                             ………………………  5分

解之得:a=-3,b=0                             ………………………  7分

(Ⅱ)由f '(x)=3x2-6x>0,得x>2,或x<0;      ………………………  9分

∴ 當(dāng)在(-∞,0)上,在(0,2)上,在,

在(-∞0),上遞增,在(0,2)上遞減,      

因此在x=2處取得極小值,所以x0=2,            ………………………  12分

由f (2)=-5,得c=-1,

∴f(x)=x3-3x2-1                               ………………………  14分

19.:解法一:

 (Ⅰ) 過(guò)P作MN∥B1C1,分別交A1B1、D1C1于M、N,則M、N A1B1、D1C1的中點(diǎn),連MB,NC由四邊形BCNM是平行四邊形,             ………………………  2分

∵E、M分別為AB、A1B1中點(diǎn),∴A1E∥MB

又MB平面PBC,∴A1E∥平面PBC。               ………………………  4分

(Ⅱ)  過(guò)A作AF⊥MB,垂足為F,連PF,

∵BC⊥平面ABB1A1,AF平面ABB1A1,

∴AF⊥BC, BC∩MB=B,∴AF⊥平面PBC,

∴∠APF就是直線AP與平面PBC所成的角,  ………… 6分

設(shè)AA1=a,則AB=a,AF=,AP=,sin∠APF=

所以,直線AP與平面PBC所成的角是arcsin。             ………… 9分

(Ⅲ)連OP、OB、OC,則OP⊥BC,由三垂線定理易得OB⊥PC,OC⊥PB,所以O(shè)在平面PBC中的射影是△PBC的垂心,又O在平面PBC中的射影是△PBC的重心,則△PBC為正三角形。即PB=PC=BC                                 ………… 12分

所以k=。

反之,當(dāng)k=時(shí),PA=AB=PB=PC=BC,所以三棱錐為正三棱錐,

∴O在平面PBC內(nèi)的射影為的重心                     ………… 14分

解法二:(建立空間坐標(biāo)系)

 

 

 

 

 

 

20.解  (Ⅰ)由=3在[a ,b]上為減函數(shù),

   得   可得a = ?1 , b = 1 ,∴ 所求區(qū)間是[?1,1].  ………… 5分

 

    (Ⅱ)取1 = 1 , 2 = 10,可得()不是減函數(shù);取1 =,可得()在(0 , +∞)不是增函數(shù),所以()不是閉函數(shù).         ………… 10分

(Ⅲ)設(shè)函數(shù)符合條件②的區(qū)間為[a ,b],則

a , b是方程=的兩個(gè)實(shí)根,命題等價(jià)于

有兩個(gè)不等實(shí)根.            ………… 13分

當(dāng)k時(shí),解得:,∴ ;

當(dāng)時(shí),這時(shí)無(wú)解.

所以 k的取值范圍是.                          ………… 16分

 

 

21.解:(Ⅰ)由f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對(duì)稱,所以

        x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2               ………… 3分

對(duì)一切實(shí)數(shù)x恒成立.得:a=-3,b+c=3,

對(duì)由f '(1)=0,得b=3,c=0,

故所求的表達(dá)式為:f(x)= x3-3x2+3x.                      ………… 7分

(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an    (1)

令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=,………… 10分

∴ 1>bn >bn+1 >0

    (a1-a2)?(a3-1)+(a2-a3)?(a4-1)+…+(an-an+1)?(an+2-1)=

=b1-bn+1<b1<1。                    ………… 14分

 (本題證法較多,其它證明方法得分可參照以上評(píng)分標(biāo)準(zhǔn)分步給分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

參考答案

一.選擇題:

1.B  2.D  2.B  3.C   4.C 5. A  6.C   7.B  8.A  9.D  10.D

 

二.填空題:

11.a+b  12.{x|x>2, 或0<x<1} 13.4,或-1  14. 15.120º   16.②④

三.解答題:

17.由題設(shè),得,,,雙曲線為,  …… 2分

直線AB的方程為,                   ………………………  4分

代入到雙曲線方程得:,       ………………………   6分

,由得:

,                         ………………………  9分

解得,則,所以為所求!  12分

18.解:(Ⅰ)由題設(shè)可得 f '(x)=3x2+2ax+b,           ………………………  2分

   ∵ f '(x)的圖像過(guò)點(diǎn)(0,0),(2,0)

                             ………………………  5分

解之得:a=-3,b=0                             ………………………  7分

(Ⅱ)由f '(x)=3x2-6x>0,得x>2,或x<0;      ………………………  9分

∴ 當(dāng)在(-∞,0)上,在(0,2)上,在,

在(-∞,0),上遞增,在(0,2)上遞減,      

因此在x=2處取得極小值,所以x0=2,            ………………………  12分

由f (2)=-5,得c=-1,

∴f(x)=x3-3x2-1                               ………………………  14分

19.:解法一:

 (Ⅰ) 過(guò)P作MN∥B1C1,分別交A1B1、D1C1于M、N,則M、N A1B1、D1C1的中點(diǎn),連MB,NC由四邊形BCNM是平行四邊形,             ………………………  2分

∵E、M分別為AB、A1B1中點(diǎn),∴A1E∥MB

又MB平面PBC,∴A1E∥平面PBC。               ………………………  4分

(Ⅱ)  過(guò)A作AF⊥MB,垂足為F,連PF,

∵BC⊥平面ABB1A1,AF平面ABB1A1,

∴AF⊥BC, BC∩MB=B,∴AF⊥平面PBC,

∴∠APF就是直線AP與平面PBC所成的角,  ………… 6分

設(shè)AA1=a,則AB=a,AF=,AP=,sin∠APF=

所以,直線AP與平面PBC所成的角是arcsin。             ………… 9分

(Ⅲ)連OP、OB、OC,則OP⊥BC,由三垂線定理易得OB⊥PC,OC⊥PB,所以O(shè)在平面PBC中的射影是△PBC的垂心,又O在平面PBC中的射影是△PBC的重心,則△PBC為正三角形。即PB=PC=BC                                 ………… 12分

所以k=

反之,當(dāng)k=時(shí),PA=AB=PB=PC=BC,所以三棱錐為正三棱錐,

∴O在平面PBC內(nèi)的射影為的重心                     ………… 14分

解法二:(建立空間坐標(biāo)系)

 

 

 

 

 

 

20.解  (Ⅰ)由=3在[a ,b]上為減函數(shù),

   得   可得a = ?1 , b = 1 ,∴ 所求區(qū)間是[?1,1].  ………… 5分

 

    (Ⅱ)取1 = 1 , 2 = 10,可得()不是減函數(shù);取1 =,可得()在(0 , +∞)不是增函數(shù),所以()不是閉函數(shù).         ………… 10分

(Ⅲ)設(shè)函數(shù)符合條件②的區(qū)間為[a ,b],則

a , b是方程=的兩個(gè)實(shí)根,命題等價(jià)于

有兩個(gè)不等實(shí)根.            ………… 13分

當(dāng)k時(shí),解得:,∴

當(dāng)時(shí),這時(shí)無(wú)解.

所以 k的取值范圍是.                          ………… 16分

 

 

21.解:(Ⅰ)由f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對(duì)稱,所以

        x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2               ………… 3分

對(duì)一切實(shí)數(shù)x恒成立.得:a=-3,b+c=3,

對(duì)由f '(1)=0,得b=3,c=0,

故所求的表達(dá)式為:f(x)= x3-3x2+3x.                      ………… 7分

(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an    (1)

令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=,………… 10分

∴ 1>bn >bn+1 >0

    (a1-a2)?(a3-1)+(a2-a3)?(a4-1)+…+(an-an+1)?(an+2-1)=

=b1-bn+1<b1<1。                    ………… 14分

 (本題證法較多,其它證明方法得分可參照以上評(píng)分標(biāo)準(zhǔn)分步給分)

 

 

 


同步練習(xí)冊(cè)答案