10.如圖.點(diǎn)線段上的一個(gè)動(dòng)點(diǎn)..分別以和為一邊作正方形.用表示這兩個(gè)正方形的面積之和.下列判斷正確的是( ) 查看更多

 

題目列表(包括答案和解析)

如圖,拋物線軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

(1)直接寫出、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;

①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?

②設(shè)的面積為,求的函數(shù)關(guān)系式

 

查看答案和解析>>

如圖,拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

(1)直接寫出、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;

①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?

②設(shè)的面積為,求的函數(shù)關(guān)系式

 

查看答案和解析>>

如圖,拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

【小題1】直接寫出、、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
【小題2】連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為
①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?
②設(shè)的面積為,求的函數(shù)關(guān)系式.

查看答案和解析>>

如圖,已知拋物線y = ax2 + bx-4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對(duì)稱軸上,⊙M的半徑為
(1)求m的值及拋物線的解析式;
(2)點(diǎn)P是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PN∥,交于點(diǎn),連接CP,當(dāng)的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)在(1)中拋物線上,點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由。

查看答案和解析>>

如圖9,平行四邊形中,,為銳角,.為線段上的一個(gè)動(dòng)點(diǎn)(不包括端點(diǎn)),,交射線于點(diǎn),交射線于點(diǎn).

【小題1】若點(diǎn)在線段上,求的周長(zhǎng)之和
【小題2】判斷在點(diǎn)的運(yùn)動(dòng)過程中,是否會(huì)相似?如果相似,請(qǐng)求出的長(zhǎng);如果不相似,請(qǐng)說明理由.

查看答案和解析>>

一.選擇題

1. D  2.A   3.C   4.B   5.A   6.D   7.A   8.A   9.B   10.A

二.填空題

11.  4(m++1)(m-+1)    12. -8   13.25cm,  

14.    15.  553   16.  10

三.解答題

17.解: ,   (2分)

             (4分)

                    (5分)

 

18.解:(1)特征1:都是軸對(duì)稱圖形;特征2:都是中心對(duì)稱圖形;特征3:這些圖形的面積都等于4個(gè)單位面積;等

(2)滿足條件的圖形有很多,只要畫正確一個(gè),都可以得滿分.

 

 

 

19.解:(1)矩形,矩形

或菱形;

或直角梯形,等.

(2)選擇是矩形.

證明:∵ABCDEF是正六邊形,

,,

同理可證

四邊形是矩形.

選擇四邊形是菱形.

證明:同理可證:,

,

四邊形是平行四邊形.

又∵BC=DE,,

四邊形是菱形.

選擇四邊形是直角梯形.

證明:同理可證:,,又由不平行,

得四邊形是直角梯形.

 

20.解:(1)=(萬(wàn)元);

                =(萬(wàn)元);  ……………………(2分)

  甲、乙兩商場(chǎng)本周獲利都是21萬(wàn)元; ……………………………………(4分)

 。2)甲、乙兩商場(chǎng)本周每天獲利的折線圖如圖2所示:

  …………………………………(6分)

 。3)從折線圖上看到:乙商場(chǎng)后兩天的銷售情況都好于甲商場(chǎng),所以,下周一乙商場(chǎng)獲利會(huì)多一些. ……………………………(8分)

 

 

21.解:(1)

          ??????????????????????????????????????????????????????????????????????????????????? 2分

(2)由題意得:

即購(gòu)種樹不少于400棵????????????????????????????????????????????????????????????????????????????????? 5分

(3)

?????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

的增大而減小

當(dāng)時(shí),購(gòu)樹費(fèi)用最低為(元)

當(dāng)時(shí),

此時(shí)應(yīng)購(gòu)種樹600棵,種樹300棵???????????????????????????????????????????????????????? 8分

 

22.(1)樹狀圖略..(2)不公平,理由如下:法一:由樹狀圖可知,,

所以不公平.法二:從(1)中樹狀圖得知,不是5的倍數(shù)時(shí),結(jié)果是奇數(shù)的有2種情況,而結(jié)果是偶數(shù)的有6種情況,顯然小李勝面大,所以不公平.法三:由于積是5的倍數(shù)時(shí)兩人得分相同,所以可直接比較積不是5的倍數(shù)時(shí),奇數(shù)、偶數(shù)的概率. P(奇數(shù))=,P(偶數(shù))=,所以不公平.可將第二道環(huán)上的數(shù)4改為任一奇數(shù).(3)設(shè)小軍x次進(jìn)入迷宮中心,則2x+3(10-x)≤28,解之得x≥2.所以小軍至少2次進(jìn)入迷宮中心.

23.解:(1)∵,,

是等邊三角形.   

(2)∵CP與相切,          

又∵(4,0),∴.∴

(3)①過點(diǎn),垂足為,延長(zhǎng),

是半徑, ∴,∴,

是等腰三角形.

又∵是等邊三角形,∴=2 .

②解法一:過,垂足為,延長(zhǎng)軸交于,

是圓心, ∴的垂直平分線. ∴

是等腰三角形,

過點(diǎn)軸于,

中,∵

.∴點(diǎn)的坐標(biāo)(4+).

中,∵

.∴點(diǎn)坐標(biāo)(2,). 

設(shè)直線的關(guān)系式為:,則有

      解得:

當(dāng)時(shí),

 ∴. 

解法二: 過A作,垂足為,延長(zhǎng),軸交于,

是圓心, ∴的垂直平分線. ∴

是等腰三角形.

,∴

平分,∴

是等邊三角形,, ∴

是等腰直角三角形.

24.(1)解:

           (2分) 解得        (2分)

   (2)      (3分)

            

              (5分)

   當(dāng)      

           (7分)

   當(dāng)      

           (9分)

           (10分)

 

25.解:如圖,

(1)點(diǎn)移動(dòng)的過程中,能成為的等腰三角形.

此時(shí)點(diǎn)的位置分別是:

的中點(diǎn),重合.

.③重合,的中點(diǎn).(4分)

(2)在中,

,

,

,,,

.(8分)

(3)相切.

,

點(diǎn)的距離相等.

相切,

點(diǎn)的距離等于的半徑.

相切.(12分)

 


同步練習(xí)冊(cè)答案