題目列表(包括答案和解析)
如圖,拋物線與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.
(1)直接寫出、、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;
①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?
②設(shè)的面積為,求與的函數(shù)關(guān)系式
如圖,拋物線與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.
(1)直接寫出、、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;
①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?
②設(shè)的面積為,求與的函數(shù)關(guān)系式
如圖,已知拋物線y = ax2 + bx-4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對(duì)稱軸上,⊙M的半徑為.
(1)求m的值及拋物線的解析式;
(2)點(diǎn)P是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PN∥,交于點(diǎn),連接CP,當(dāng)的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)在(1)中拋物線上,點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由。
如圖9,平行四邊形中,,,為銳角,.為線段上的一個(gè)動(dòng)點(diǎn)(不包括端點(diǎn)),,交射線于點(diǎn),交射線于點(diǎn).
【小題1】若點(diǎn)在線段上,求與的周長(zhǎng)之和
【小題2】判斷在點(diǎn)的運(yùn)動(dòng)過程中,與是否會(huì)相似?如果相似,請(qǐng)求出的長(zhǎng);如果不相似,請(qǐng)說明理由.
一.選擇題
1. D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.B 10.A
二.填空題
11. 4(m++1)(m-+1) 12.
-8 13.
14. 15. 553 16. 10
三.解答題
17.解: , (2分)
(4分)
(5分)
18.解:(1)特征1:都是軸對(duì)稱圖形;特征2:都是中心對(duì)稱圖形;特征3:這些圖形的面積都等于4個(gè)單位面積;等
(2)滿足條件的圖形有很多,只要畫正確一個(gè),都可以得滿分.
19.解:(1)矩形,矩形;
或菱形;
或直角梯形,等.
(2)選擇是矩形.
證明:∵ABCDEF是正六邊形,
,,.
同理可證.
四邊形是矩形.
選擇四邊形是菱形.
證明:同理可證:,,
,.
四邊形是平行四邊形.
又∵BC=DE,,,
.
.
四邊形是菱形.
選擇四邊形是直角梯形.
證明:同理可證:,,又由與不平行,
得四邊形是直角梯形.
20.解:(1)甲=(萬(wàn)元);
乙=(萬(wàn)元); ……………………(2分)
甲、乙兩商場(chǎng)本周獲利都是21萬(wàn)元; ……………………………………(4分)
。2)甲、乙兩商場(chǎng)本周每天獲利的折線圖如圖2所示:
…………………………………(6分)
。3)從折線圖上看到:乙商場(chǎng)后兩天的銷售情況都好于甲商場(chǎng),所以,下周一乙商場(chǎng)獲利會(huì)多一些. ……………………………(8分)
21.解:(1)
??????????????????????????????????????????????????????????????????????????????????? 2分
(2)由題意得:
即購(gòu)種樹不少于400棵????????????????????????????????????????????????????????????????????????????????? 5分
(3)
?????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分
隨的增大而減小
當(dāng)時(shí),購(gòu)樹費(fèi)用最低為(元)
當(dāng)時(shí),
此時(shí)應(yīng)購(gòu)種樹600棵,種樹300棵???????????????????????????????????????????????????????? 8分
22.(1)樹狀圖略..(2)不公平,理由如下:法一:由樹狀圖可知,,,.
所以不公平.法二:從(1)中樹狀圖得知,不是5的倍數(shù)時(shí),結(jié)果是奇數(shù)的有2種情況,而結(jié)果是偶數(shù)的有6種情況,顯然小李勝面大,所以不公平.法三:由于積是5的倍數(shù)時(shí)兩人得分相同,所以可直接比較積不是5的倍數(shù)時(shí),奇數(shù)、偶數(shù)的概率. P(奇數(shù))=,P(偶數(shù))=,所以不公平.可將第二道環(huán)上的數(shù)4改為任一奇數(shù).(3)設(shè)小軍x次進(jìn)入迷宮中心,則2x+3(10-x)≤28,解之得x≥2.所以小軍至少2次進(jìn)入迷宮中心.
23.解:(1)∵,,
∴是等邊三角形.
∴.
(2)∵CP與相切,
∴.
又∵(4,0),∴.∴.
∴.
(3)①過點(diǎn)作,垂足為,延長(zhǎng)交于,
∵是半徑, ∴,∴,
∴是等腰三角形.
又∵是等邊三角形,∴=2 .
②解法一:過作,垂足為,延長(zhǎng)交于,與軸交于,
∵是圓心, ∴是的垂直平分線. ∴.
∴是等腰三角形,
過點(diǎn)作軸于,
在中,∵,
∴.∴點(diǎn)的坐標(biāo)(4+,).
在中,∵,
∴.∴點(diǎn)坐標(biāo)(2,).
設(shè)直線的關(guān)系式為:,則有
解得:
∴.
當(dāng)時(shí),.
∴.
解法二: 過A作,垂足為,延長(zhǎng)交于,與軸交于,
∵是圓心, ∴是的垂直平分線. ∴.
∴是等腰三角形.
∵,∴.
∵平分,∴.
∵是等邊三角形,, ∴.
∴.
∴是等腰直角三角形.
∴.
∴.
24.(1)解:
(2分) 解得 (2分)
(2) (3分)
(5分)
當(dāng)
(7分)
當(dāng)
(9分)
(10分)
25.解:如圖,
(1)點(diǎn)移動(dòng)的過程中,能成為的等腰三角形.
此時(shí)點(diǎn)的位置分別是:
①是的中點(diǎn),與重合.
②.③與重合,是的中點(diǎn).(4分)
(2)在和中,
,,
.
又,
.
.
.(8分)
(3)與相切.
,
.
.
即.
又,
.
.
點(diǎn)到和的距離相等.
與相切,
點(diǎn)到的距離等于的半徑.
與相切.(12分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com