(1)求的度數(shù), 查看更多

 

題目列表(包括答案和解析)

如圖,△ABP中,∠APB=∠α,把△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△ACE.連結(jié)BC、PE、PC,測(cè)量得∠BPC=100°.

(1)請(qǐng)找出圖中的兩個(gè)等邊三角形:
△ABC,△APE
△ABC,△APE
 (不再添加其它點(diǎn)或線)
(2)若∠α=150°,試判斷△PEC的形狀,并說明你的理由;
(3)若△CPE為等腰三角形,求∠α的度數(shù).

查看答案和解析>>

九年級(jí)甲班數(shù)學(xué)興趣小組組織社會(huì)實(shí)踐活動(dòng),目的是測(cè)量一山坡的護(hù)坡石壩高度及石壩與地面的傾角∠α.
(1)如圖1,小明所在的小組用一根木條EF斜靠在護(hù)坡石壩上,使得BF與BE的長(zhǎng)度相等,如果測(cè)量得到∠EFB=36°,求∠α的度數(shù)
(2)如圖2,小亮所在的小組把一根長(zhǎng)為5米的竹竿AG斜靠在石壩旁,量出竹竿GM長(zhǎng)1米時(shí)離地面的高度MN為0.6米,求護(hù)坡石壩的垂直高度AH長(zhǎng)
(3)全班總結(jié)了各組的方法后,設(shè)計(jì)了如圖3方案:在護(hù)坡石壩頂部的影子處有一棵大樹PD,測(cè)得大樹的影子長(zhǎng)CP為9米,點(diǎn)P到護(hù)坡石壩底部B的距離為3米,如果利用(1)、(2)中得到的結(jié)論,求出大樹PD的高度.
(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.3,tan72°≈3.0 )

查看答案和解析>>

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,C是優(yōu)弧AB上一點(diǎn),設(shè)∠OAB=α,∠C=β.
(1)當(dāng)α=35°時(shí),求β的度數(shù);
(2)猜想α與β之間的關(guān)系,并給予證明.

查看答案和解析>>

學(xué)科間整合:
如圖所示,光線照射到平面鏡Ⅰ上,然后在平面鏡Ⅰ、Ⅱ之間來回反射,已知∠α=50°,∠θ=35°,求∠β的度數(shù).

查看答案和解析>>

已知α,β均為銳角,且tanα=
1
2
,tanβ=
1
3
,求α+β的度數(shù).

查看答案和解析>>

一.選擇題

1. D  2.A   3.C   4.B   5.A   6.D   7.A   8.A   9.B   10.A

二.填空題

11.  4(m++1)(m-+1)    12. -8   13.25cm,  

14.    15.  553   16.  10

三.解答題

17.解: ,   (2分)

             (4分)

                    (5分)

 

18.解:(1)特征1:都是軸對(duì)稱圖形;特征2:都是中心對(duì)稱圖形;特征3:這些圖形的面積都等于4個(gè)單位面積;等

(2)滿足條件的圖形有很多,只要畫正確一個(gè),都可以得滿分.

 

 

 

19.解:(1)矩形,矩形;

或菱形;

或直角梯形,等.

(2)選擇是矩形.

證明:∵ABCDEF是正六邊形,

,

同理可證

四邊形是矩形.

選擇四邊形是菱形.

證明:同理可證:,

,

四邊形是平行四邊形.

又∵BC=DE,,

四邊形是菱形.

選擇四邊形是直角梯形.

證明:同理可證:,,又由不平行,

得四邊形是直角梯形.

 

20.解:(1)=(萬(wàn)元);

                =(萬(wàn)元);  ……………………(2分)

  甲、乙兩商場(chǎng)本周獲利都是21萬(wàn)元; ……………………………………(4分)

 。2)甲、乙兩商場(chǎng)本周每天獲利的折線圖如圖2所示:

  …………………………………(6分)

 。3)從折線圖上看到:乙商場(chǎng)后兩天的銷售情況都好于甲商場(chǎng),所以,下周一乙商場(chǎng)獲利會(huì)多一些. ……………………………(8分)

 

 

21.解:(1)

          ??????????????????????????????????????????????????????????????????????????????????? 2分

(2)由題意得:

即購(gòu)種樹不少于400棵????????????????????????????????????????????????????????????????????????????????? 5分

(3)

?????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

的增大而減小

當(dāng)時(shí),購(gòu)樹費(fèi)用最低為(元)

當(dāng)時(shí),

此時(shí)應(yīng)購(gòu)種樹600棵,種樹300棵???????????????????????????????????????????????????????? 8分

 

22.(1)樹狀圖略..(2)不公平,理由如下:法一:由樹狀圖可知,,,

所以不公平.法二:從(1)中樹狀圖得知,不是5的倍數(shù)時(shí),結(jié)果是奇數(shù)的有2種情況,而結(jié)果是偶數(shù)的有6種情況,顯然小李勝面大,所以不公平.法三:由于積是5的倍數(shù)時(shí)兩人得分相同,所以可直接比較積不是5的倍數(shù)時(shí),奇數(shù)、偶數(shù)的概率. P(奇數(shù))=,P(偶數(shù))=,所以不公平.可將第二道環(huán)上的數(shù)4改為任一奇數(shù).(3)設(shè)小軍x次進(jìn)入迷宮中心,則2x+3(10-x)≤28,解之得x≥2.所以小軍至少2次進(jìn)入迷宮中心.

23.解:(1)∵,

是等邊三角形.   

(2)∵CP與相切,          

又∵(4,0),∴.∴

(3)①過點(diǎn),垂足為,延長(zhǎng),

是半徑, ∴,∴,

是等腰三角形.

又∵是等邊三角形,∴=2 .

②解法一:過,垂足為,延長(zhǎng),軸交于,

是圓心, ∴的垂直平分線. ∴

是等腰三角形,

過點(diǎn)軸于,

中,∵,

.∴點(diǎn)的坐標(biāo)(4+).

中,∵,

.∴點(diǎn)坐標(biāo)(2,). 

設(shè)直線的關(guān)系式為:,則有

      解得:

當(dāng)時(shí),

 ∴. 

解法二: 過A作,垂足為,延長(zhǎng),軸交于,

是圓心, ∴的垂直平分線. ∴

是等腰三角形.

,∴

平分,∴

是等邊三角形,, ∴

是等腰直角三角形.

24.(1)解:

           (2分) 解得        (2分)

   (2)      (3分)

            

              (5分)

   當(dāng)      

           (7分)

   當(dāng)      

           (9分)

           (10分)

 

25.解:如圖,

(1)點(diǎn)移動(dòng)的過程中,能成為的等腰三角形.

此時(shí)點(diǎn)的位置分別是:

的中點(diǎn),重合.

.③重合,的中點(diǎn).(4分)

(2)在中,

,

,

,,

.(8分)

(3)相切.

,

點(diǎn)的距離相等.

相切,

點(diǎn)的距離等于的半徑.

相切.(12分)

 


同步練習(xí)冊(cè)答案