9.已知公差不為0的等差數(shù)列 A.-4 B.-6 C.-8 D.-10 查看更多

 

題目列表(包括答案和解析)

已知公差不為0的等差數(shù)列{an}的首項a1(a1∈R),且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)對n∈N*,試比較
1
a2
+
1
a22
+
1
a23
+…+
1
a2n
1
a1
的大。

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且滿足S5=3a5-2,又a1,a2,a5依次成等比數(shù)列,數(shù)列{bn}滿足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k為大于0的常數(shù).
(1)求數(shù)列{an},{bn}的通項公式;
(2)記數(shù)列an+bn的前n項和為Tn,若當(dāng)且僅當(dāng)n=3時,Tn取得最小值,求實數(shù)k的取值范圍.

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}滿足a2=3,a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足bn=
an
an+1
+
an+1
an
,求數(shù)列{bn}的前n項和Sn
(Ⅲ)設(shè)cn=2n(
an+1
n
-λ)
,若數(shù)列{cn}是單調(diào)遞減數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

(2011•鹽城二模)已知公差不為0的等差數(shù)列{an}滿足a1、a3、a9成等比數(shù)列,Sn為數(shù)列{an}的前n項和,則
S11-S9S7-S6
的值為
3
3

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}的首項a1=3,設(shè)數(shù)列的前項和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式及Sn;
(II)求An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn

查看答案和解析>>

 

一、選擇題(共60分)

1―6DDBBAC  7―12DABCAC

二、填空題:(本大題共5小題,每小題5分,共20分)

13.3

14.

15.

16.240

三、解答題:本大題有6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)記“這名考生通過書面測試”為事件A,則這名考生至少正確做出3道題,即正確做出3道題或4道題,

       故   4分

   (2)由題意得的所有可能取值分別是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列為:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面體ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如圖,連B1C,則

       易證

       中點,

      

          8分

       取CD中點M,連BM, 則平面CC1D1D,

       作于N,連NB,由三垂線定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       則二面角B―DE―C的大小為    12分

       解法二:(1)以D為坐標(biāo)原點,射線DA為軸,建立如圖所示坐標(biāo)為

       依題設(shè)

      

      

       又

       平面BDE    6分

      <i id="xdzqm"><del id="xdzqm"></del></i>
    • <span id="xdzqm"><kbd id="xdzqm"></kbd></span>

          <p id="xdzqm"></p>

                 8分

                 由(1)知平面BDE的一個法向量為

                 取DC中點M,則

                

                

                 等于二面角B―DE―C的平面角    10分

                    12分

          20.解:(1)由已知得   2分

                 由

                

                 遞減

                 在區(qū)間[-1,1]上的最大值為   4分

                 又

                

                 由題意得

                 故為所求         6分

             (2)解:

                

                     8分

                 二次函數(shù)的判別式為:

                

                 令

                 令    10分

                

                 為單調(diào)遞增,極值點個數(shù)為0    11分

                 當(dāng)=0有兩個不相等的實數(shù)根,根據(jù)極值點的定義,可知函數(shù)有兩個極值點    12分

          21.解:(1)設(shè)

                 化簡得    3分

             (2)將    4分

                 法一:兩點不可能關(guān)于軸對稱,

                 的斜率必存在

                 設(shè)直線DE的方程為

                 由   5分

                     6分

                    7分

                 且

                    8分

                 將代化入簡得

                    9分

                 將,

                 過定點(-1,-2)    10分

                 將,

                 過定點(1,2)即為A點,舍去     11分

                     12分

                 法二:設(shè)    (5分)

                 則   6分

                 同理

                 由已知得   7分

                 設(shè)直線DE的方程為

                 得   9分

                    10分

                 即直線DE過定點(-1,-2)    12分

          22.解:(1)由    2分

                 于是

                 即    3分

                 有   5分

                    6分

             (2)由(1)得    7分

                 而

                

                         

                     10分

                 當(dāng)

                 于是

                 故命題得證     12分


          同步練習(xí)冊答案