A.(1.2) B. 查看更多

 

題目列表(包括答案和解析)

若規(guī)定
.
ab
cd
.
=ad-bc
則不等式log
.
11
1x
.
<0
的解集是( 。

查看答案和解析>>

已知函數(shù)f(x)=
13
x3-ax+b
,其中實(shí)數(shù)a,b是常數(shù).
(1)已知a∈{0,1,2},b∈{0,1,2},求事件A“f(1)≥0”發(fā)生的概率;
(2)若f(x)是R上的奇函數(shù),g(a)是f(x)在區(qū)間[-1,1]上的最小值,求當(dāng)|a|≥1時(shí)g(a)的解析式.

查看答案和解析>>

1、已知集合A={x|y=lnx},集合B={-2,-1,1,2},則A∩B=( 。

查看答案和解析>>

(2013•濟(jì)南二模)已知集合A={x||x-1|<2},B={x|log2x<2},則A∩B=( 。

查看答案和解析>>

設(shè)雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線與直線x=
a2
c
分別交于A,B兩點(diǎn),F(xiàn)為該雙曲線的右焦點(diǎn).若60°<∠AFB<90°,則該雙曲線的離心率的取值范圍是(  )

查看答案和解析>>

 

一、選擇題(共60分)

1―6DDBBAC  7―12DABCAC

二、填空題:(本大題共5小題,每小題5分,共20分)

13.3

14.

15.

16.240

三、解答題:本大題有6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)記“這名考生通過書面測試”為事件A,則這名考生至少正確做出3道題,即正確做出3道題或4道題,

       故   4分

   (2)由題意得的所有可能取值分別是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列為:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面體ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如圖,連B1C,則

       易證

       中點(diǎn),

      

          8分

       取CD中點(diǎn)M,連BM, 則平面CC1D1D,

       作于N,連NB,由三垂線定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       則二面角B―DE―C的大小為    12分

       解法二:(1)以D為坐標(biāo)原點(diǎn),射線DA為軸,建立如圖所示坐標(biāo)為

       依題設(shè)

      

      

       又

       平面BDE    6分

    <sub id="fif27"><b id="fif27"></b></sub>

        • <rp id="fif27"></rp>

                 8分

                 由(1)知平面BDE的一個(gè)法向量為

                 取DC中點(diǎn)M,則

                

                

                 等于二面角B―DE―C的平面角    10分

                    12分

          20.解:(1)由已知得   2分

                 由

                

                 遞減

                 在區(qū)間[-1,1]上的最大值為   4分

                 又

                

                 由題意得

                 故為所求         6分

             (2)解:

                

                     8分

                 二次函數(shù)的判別式為:

                

                 令

                 令    10分

                

                 為單調(diào)遞增,極值點(diǎn)個(gè)數(shù)為0    11分

                 當(dāng)=0有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)極值點(diǎn)的定義,可知函數(shù)有兩個(gè)極值點(diǎn)    12分

          21.解:(1)設(shè)

                 化簡得    3分

             (2)將    4分

                 法一:兩點(diǎn)不可能關(guān)于軸對稱,

                 的斜率必存在

                 設(shè)直線DE的方程為

                 由   5分

                     6分

                    7分

                 且

                    8分

                 將代化入簡得

                    9分

                 將,

                 過定點(diǎn)(-1,-2)    10分

                 將,

                 過定點(diǎn)(1,2)即為A點(diǎn),舍去     11分

                     12分

                 法二:設(shè)    (5分)

                 則   6分

                 同理

                 由已知得   7分

                 設(shè)直線DE的方程為

                 得   9分

                    10分

                 即直線DE過定點(diǎn)(-1,-2)    12分

          22.解:(1)由    2分

                 于是

                 即    3分

                 有   5分

                    6分

             (2)由(1)得    7分

                 而

                

                         

                     10分

                 當(dāng)

                 于是

                 故命題得證     12分


          同步練習(xí)冊答案