已知兩條不同的直線與三個不同的平面.滿足.那么必有 查看更多

 

題目列表(包括答案和解析)

已知兩條異面直線a和b分別在平面α和β內,且α∩β=c,則(    )

A.直線c同時和a、b相交

B.直線c和a、b都不相交

C.直線c至少和a、b中的一條相交

D.直線c至多和a、b中的一條相交

查看答案和解析>>

(2009•臺州二模)已知兩條不同的直線m,l與三個不同的平面α,β,γ,滿足l=β∩γ,l∥α,m?α,m⊥γ,那么必有(  )

查看答案和解析>>

(2012•揚州模擬)已知兩條不同的直線m、n與兩個互異的平面α、β給出下列五個命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則m⊥n;
③若m⊥α,m∥β,則α⊥β;
④若m⊥α,α⊥β,則m∥β;
其中真命題的序號是.
②③
②③

查看答案和解析>>

已知兩條不同的直線、及平面,給出四個下列命題:

(1)若,,則;

(2)若,則;

(3)若、所成的角相等,則

(4)若,,則

其中正確的命題有(  )

A.個     B.個    C.個    D.

 

查看答案和解析>>

已知兩條不同的直線m,l與三個不同的平面α,β,γ,滿足l=β∩γ,l∥α,m?α,m⊥γ,那么必有( )
A.α⊥γ,m⊥l
B.α⊥γ,m∥β
C.m∥β,m⊥l
D.α∥β,α⊥γ

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由題意,有

.…………………………5分

,得

∴函數的單調增區(qū)間為 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)設數列的公比為,由.             …………………………………………………………… 4分

∴數列的通項公式為.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中點,連接.

分別是梯形的中位線

,又

∴面,又

.……………………… 7分

(II)由三視圖知,是等腰直角三角形,

     連接

     在面AC1上的射影就是,∴

     ,

∴當的中點時,與平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由題意:.

為點M的軌跡方程.     ………………………………………… 4分

(Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯立得:,設6ec8aac122bd4f6e

    ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程為,求得.  ………………………… 9分

.  ……………………………… 13分

當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

22. 解:(Ⅰ),由題意得,

所以                    ………………………………………………… 4分

(Ⅱ)證明:令,

得:,……………………………………………… 7分

(1)當時,,在,即上單調遞增,此時.

          …………………………………………………………… 10分

(2)當時,,在,在,在,即上單調遞增,在上單調遞減,在上單調遞增,或者,此時只要或者即可,得

.                        …………………………………………14分

由 (1) 、(2)得 .

∴綜上所述,對于,使得成立. ………………15分

 


同步練習冊答案