又因為 所以.平面. 查看更多

 

題目列表(包括答案和解析)

設A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為,

所以

(2)  不妨設.由題意得.又因為,所以

于是,

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設,

。

得定義知,,

又因為

所以

     

     

所以,

對數(shù)表

1

1

1

-1

-1

 

,

綜上,對于所有的,的最大值為

 

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)的單調區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)令,當時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為

,即時,函數(shù)在區(qū)間上單調遞增,在區(qū)間上的最大值為

,即時,函數(shù)在區(qū)間內單調遞增,在區(qū)間上單調遞減,在區(qū)間上的最大值為

,即a>6時,函數(shù)在區(qū)間內單調遞贈,在區(qū)間內單調遞減,在區(qū)間上單調遞增。又因為

所以在區(qū)間上的最大值為。

 

查看答案和解析>>

函數(shù)有意義,需使高考資源網( www.ks5u.com),中國最大的高考網站,您身邊的高考專家。,其定義域為高考資源網( www.ks5u.com),中國最大的高考網站,您身邊的高考專家。,排除C,D,又因為高考資源網( www.ks5u.com),中國最大的高考網站,您身邊的高考專家。,所以當高考資源網( www.ks5u.com),中國最大的高考網站,您身邊的高考專家。時函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m    

答案:A.

【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調性等性質.本題的難點在于給出的函數(shù)比較復雜,需要對其先變形,再在定義域內對其進行考察其余的性質.

查看答案和解析>>

如圖,三棱錐中,側面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

在棱長為的正方體中,是線段的中點,.

(1) 求證:^;

(2) 求證://平面;

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定為平行四邊形,然后,可知結論成立。

第三問中,是邊長為的正三角形,其面積為,

因為平面,所以,

所以是直角三角形,其面積為

同理的面積為, 面積為.  所以三棱錐的表面積為.

解: (1)證明:根據正方體的性質,

因為

所以,又,所以,,

所以^.               ………………4分

(2)證明:連接,因為,

所以為平行四邊形,因此

由于是線段的中點,所以,      …………6分

因為,平面,所以∥平面.   ……………8分

(3)是邊長為的正三角形,其面積為

因為平面,所以,

所以是直角三角形,其面積為,

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>


同步練習冊答案