(I)求證:平面, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD中,AB⊥AD,AB+AD=4,CD=
2
,∠CDA=45°.
(I)求證:平面PAB⊥平面PAD;
(II)設AB=AP.
(i)若直線PB與平面PCD所成的角為30°,求線段AB的長;
(ii)在線段AD上是否存在一個點G,使得點G到點P,B,C,D的距離都相等?說明理由.

查看答案和解析>>

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(I)求證:平面PBE⊥平面PBD;
(II)若二面角P-AB-D為45°,求直線PA與平面PBE所成角的正弦值.

查看答案和解析>>

精英家教網(wǎng)如圖:直平行六面體ABCD-A1B1C1D1,底面ABCD是邊長為2a的菱形,∠BAD=60°,E為AB中點,二面角A1-ED-A為60°.
(I)求證:平面A1ED⊥平面ABB1A1
(II)求二面角A1-ED-C1的余弦值;
(III)求點C1到平面A1ED的距離.

查看答案和解析>>

如圖,四棱錐P-ABCD的底面為矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD
(I)求證:平面PAD⊥平面PCD
(II)試在平面PCD上確定一點 E 的位置,使|
AE
|最小,并說明理由;
(III)當AD=AB時,求二面角A-PC-D的余弦值.

查看答案和解析>>

如圖,多面體ABCD-EFG中,底面ABCD為正方形,GD∥FC∥AE,AE⊥平面ABCD,其正視圖、俯視圖如下:精英家教網(wǎng)
(I)求證:平面AEF⊥平面BDG;
(II)若存在λ>0使得
AK
=λ
AE
,二面角A-BG-K的大小為60°,求λ的值.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設的中點,連結,則四邊形為正方形,

.故,,,,即

學科網(wǎng)(Zxxk.Com),

平面,                                   

(II)由(I)知平面,

平面,,

的中點, 連結,又,則

的中點,連結,則,.

為二面角的平面角.

連結,在中,,,

的中點,連結,,

中,,,

二面角的余弦值為

解法二:

(I)以為原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,,.

學科網(wǎng)(Zxxk.Com),,

又因為 所以,平面.

(II)設為平面的一個法向量.

,,

    取,則

,,設為平面的一個法向量,

,得,則,

的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當時, 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以,時,函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知,

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即

,得

∵直線與橢圓交于不同的兩點

,

       ∴,

,則,

上單調(diào)遞增          ∴.

 

 

 


同步練習冊答案