17.甲.乙.丙3人積壓自進行1次實驗.一次實驗各自成功的概率分別是0.4,0.5,0.6 (Ⅰ)求3個人各自進行1次實驗都沒有成功的概率, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

       甲、乙、丙三臺機床各自獨立的加工同一種零件,已知甲、乙、丙三臺機床加工的零件是一等品的概率分別為0.7、0.6、0.8,乙、丙兩臺機床加工的零件數(shù)相等,甲機床加工的零件數(shù)是乙機床加工的零件的二倍。

   (1)從甲、乙、丙加工的零件中各取一件檢驗,示至少有一件一等品的概率;

   (2)將三臺機床加工的零件混合到一起,從中任意的抽取一件檢驗,求它是一等品的概率;

   (3)將三臺機床加工的零件混合到一起,從中任意的抽取4件檢驗,其中一等品的個數(shù)記為X,求EX。

查看答案和解析>>

(本小題滿分12分)

       甲、乙、丙三臺機床各自獨立的加工同一種零件,已知甲、乙、丙三臺機床加工的零件是一等品的概率分別為0.7、0.6、0.8,乙、丙兩臺機床加工的零件數(shù)相等,甲機床加工的零件數(shù)是乙機床加工的零件的二倍。

   (1)從甲、乙、丙加工的零件中各取一件檢驗,示至少有一件一等品的概率;

   (2)將三臺機床加工的零件混合到一起,從中任意的抽取一件檢驗,求它是一等品的概率;

   (3)將三臺機床加工的零件混合到一起,從中任意的抽取4件檢驗,其中一等品的個數(shù)記為X,求EX。

 

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止.設(shè)在每局中參賽者勝負的概率均為,且各局勝負相互獨立.求:

(1)打了兩局就停止比賽的概率;

(2)打滿3局比賽還未停止的概率;

(3)比賽停止時已打局數(shù)的分布列與期望.

 

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三人進行象棋比賽,每兩人比賽一場,共賽三場。每場比賽勝者得3分,負者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為。

(1)求甲獲第一名且丙獲第二名的概率;

(2)設(shè)在該次比賽中,甲得分為ξ,求ξ的分布列和數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三人進行象棋比賽,每兩人比賽一場,共賽三場。每場比賽勝者得3分,負者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為。

(1)求甲獲第一名且丙獲第二名的概率;

(2)設(shè)在該次比賽中,甲得分為ξ,求ξ的分布列和數(shù)學(xué)期望。

查看答案和解析>>

 

一、選擇題

A卷:BACDB    DCABD    BA

B卷:BDACD    BDCAB    BA

二、填空題

13.15  

14.210

15.

16.①④

三、解答題:

17. 解:(注:考試中計算此題可以使用分數(shù),以下的解答用的是小數(shù))

   (Ⅰ)同文(Ⅰ)

   (Ⅱ)的概率分別為

隨機變量的概率分布為

0

1

2

3

P

0.216

0.432

0.288

0.064

………………8分

的數(shù)學(xué)期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

(或利用E=mp=3×0.4=1.2)

的方差為

D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

=0.72.…………………………12分

(或利用D=nq=3×0.4×0.6=0.72)

 

18.解:

   (Ⅰ)

…………4分

所以,的最小正周期,最小值為-2.…………………………6分

   (Ⅱ)列表:

x

0

2

0

-2

0

 

 

 

 

 

 

 

 

 

 

 

 

…………………12分

(19?文)同18?理.

(19?理)解:(Ⅰ)取A1A的中點P,連PM、PN,則PN//AD,

…………………………6分

 

     

     

     

     

     

     

     

     

     

     

     

       (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

             顯然

    利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

    cos∠A1OA=.

    所以二面角的大小為arccos……………………………………………12分

    (20?文)同19理.

    (20?理)(I)證明:當q>0時,由a1>0,知an>0,所以Sn>0;………………2分

    當-1<q<0時,因為a1>0,1-q>0,1-qn>0,所以.

    綜上,當q>-1且q≠0時,Sn>0總成立.……………………5分

       (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

            Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

            依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

            ∵Sn>0,∴可得q-kq2>k,

    即k(1+q2)<q,k<.

    ∴k的取值范圍是. ……………………12分

    (21?文)解:f′(x)=3x2+4ax-b.………………………………2分

             設(shè)f′(x)=0的二根為x1,x2,由已知得

             x1=-1,x2≥2,………………………………………………4分

             …………………………7分

            解得

            故a的取值范圍是…………………………………………12分

    (21?理)解:(I)設(shè)橢圓方程

            由2c=4得c=2,又.

            故a=3,b2=a2-c2=5,

            ∴所求的橢圓方程.…………………………………………5分

       (II)點F的坐標為(0,2),設(shè)直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

    得(9+5k2)x2+20kx-25=0,………………………………8分

    顯然△>0成立,

    根據(jù)韋達定理得

    ,                       ①

    .                           ②

    ,

    ,代入①、②得

                                         ③

                                        ④

    由③、④得

     …………………………………………14分

    (22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

    (22.理)(1)證明:令

    原不等式…………………………2分

    ,

    單調(diào)遞增,,

    ………………………………………………5分

    單調(diào)遞增,,

     …………………………………………8分

    ………………………………9分

       (Ⅱ)令,上式也成立

    將各式相加

    ……………11分

    ……………………………………………………………………14分

     


    同步練習(xí)冊答案