15.已知非零向量的夾角為.且.若與向量的夾角為.則 . 查看更多

 

題目列表(包括答案和解析)

已知一列非零向量
an
,n∈N*,滿足:
a1
=(10,-5),
an
=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)
,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{|
an
|}是的通項(xiàng)公式;
(2)求向量
an-1
an
的夾角;(n≥2);
(3)當(dāng)k=
1
2
時,把
a1
,
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成一列,記為
b1
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t
,
lim
n→∞
sn=s
,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>

已知一列非零向
an
滿足:
a1
=(x1,y1),
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)(n≥2)

(Ⅰ)證明:{|
an
|}
是等比數(shù)列;
(Ⅱ)求向量
a
n-1
a
n
的夾角(n≥2)

(Ⅲ)設(shè)
a
1
=(1,2),把
a1
,
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成
一列,記為
b1
,
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).
(注:若點(diǎn)Bn坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,則稱點(diǎn)B(t,s)為點(diǎn)列{Bn}
的極限點(diǎn).)

查看答案和解析>>

已知一列非零向
an
滿足:
a1
=(x1y1),
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)(n≥2)

(Ⅰ)證明:{|
an
|}
是等比數(shù)列;
(Ⅱ)求向量
a
n-1
a
n
的夾角(n≥2)

(Ⅲ)設(shè)
a
1
=(1,2),把
a1
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成
一列,記為
b1
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).
(注:若點(diǎn)Bn坐標(biāo)為(tnsn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,則稱點(diǎn)B(t,s)為點(diǎn)列{Bn}
的極限點(diǎn).)

查看答案和解析>>

已知一列非零向量
an
,n∈N*,滿足:
a1
=(10,-5),
an
=(xnyn)=k(xn-1-yn-1,xn-1+yn-1)
,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{|
an
|}是的通項(xiàng)公式;
(2)求向量
an-1
an
的夾角;(n≥2);
(3)當(dāng)k=
1
2
時,把
a1
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成一列,記為
b1
,
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t
lim
n→∞
sn=s
,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>

已知一列非零向量,n∈N*,滿足:=(10,-5),,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{||}是的通項(xiàng)公式;
(2)求向量的夾角;(n≥2);
(3)當(dāng)k=時,把,…,,…中所有與共線的向量按原來的順序排成一列,記為,,…,,…,令,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且,,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>


同步練習(xí)冊答案