(3)設(shè), 判斷能否小于0 ? 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=-x2+4,設(shè)函數(shù)
(1)求F(x)表達(dá)式;
(2)解不等式1≤F(x)≤2;
(3)設(shè)mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

已知函數(shù)f(x)=-x2+4,設(shè)函數(shù)F(x)=
f(x),(x>0)
-f(x),(x<0)

(1)求F(x)表達(dá)式;
(2)解不等式1≤F(x)≤2;
(3)設(shè)mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

已知函數(shù)f(x)=-x2+4,設(shè)函數(shù)F(x)=
f(x),(x>0)
-f(x),(x<0)

(1)求F(x)表達(dá)式;
(2)解不等式1≤F(x)≤2;
(3)設(shè)mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

(理)設(shè)A={x|x≠kπ+,k∈Z},已知a=(2cos,sin),b=(cos,3sin),其中α、β∈A,

(1)若α+β=,且a=2b,求α,β的值;

(2)若a·b=,求tanαtanβ的值.

(文)已知函數(shù)f(x)=-x2+4,設(shè)函數(shù)F(x)=

(1)求F(x)的表達(dá)式;

(2)解不等式1≤F(x)≤2;

(3)設(shè)mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

(2010四川理數(shù))(20)(本小題滿分12分)

已知定點(diǎn)A(-1,0),F(2,0),定直線lx,不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過(guò)點(diǎn)F的直線交EB、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)M、N

(Ⅰ)求E的方程;

(Ⅱ)試判斷以線段MN為直徑的圓是否過(guò)點(diǎn)F,并說(shuō)明理由.【來(lái)源:全,品…中&高*考+網(wǎng)】

本小題主要考察直線、軌跡方程、雙曲線等基礎(chǔ)知識(shí),考察平面機(jī)襲擊和的思想方法及推理運(yùn)算能力.

查看答案和解析>>


同步練習(xí)冊(cè)答案