14 設方程 的兩個根為.則 查看更多

 

題目列表(包括答案和解析)

設α、β為方程2x2+3x+1=0的兩個根,則(
14
α+β=
 

查看答案和解析>>

(本題滿分14分)設直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.

(Ⅱ)觀察下圖:

           

    根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

(本題滿分14分)設直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.
(Ⅱ)觀察下圖:
          
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

(本小題滿分14分)

設直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR,都有. 則稱直線l為曲線S的“上夾線”.

(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.

(Ⅱ)觀察下圖:

根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

 

查看答案和解析>>


(本小題滿分14分)
已知函數(shù),當時,取得極小值.
(1)求,的值;
(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設是方程的實數(shù)根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>


同步練習冊答案