題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
DCABC CBBAC
11
12 23
13 2
14 4π
15
16解 (1) 1分
2分
由已知有 4分
6分
(2) 10分
= 11分
= 12分
17解:(1)設(shè)紅球有個,白球個,依題意得 1分
, 3分
解得
故紅球有6個. 5分
(2)記“甲取出的球的編號大”為事件A,
所有的基本事件有:(1,2),(l,3),(1,4),
(2,1),(2,3),(2,4),
(3,1),(3,2),(3,4),
(4,1),(4,2),(4,3),
共12個基本事件 8分
事件A包含的基本事件有:(1,2),(1,3),(1,4)(2,1),
(2,3),(3,1),(3,2)(4,1),
共8個基本事件 11分
所以,. 12分
18解:(1)底面三邊長AC=3,BC=4,AB=5,
∠ACB=90°,∴ AC⊥BC, (2分)
又在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC底面ABC,∴CC1⊥AC,(3分)
BC.CC1平面BCC1,且BC 與CC1相交
∴ AC⊥平面BCC1; (5分)
而BC1平面BCC1
∴ AC⊥BC1 (6分)
(2)設(shè)CB1與C1B的交點為E,連結(jié)DE,∵ D是AB的中點,E是BC1的中點,
∴ DE//AC1, (8分)
∵ DE平面CDB1,AC1平面CDB1,
∴ AC1//平面CDB1;(10分)
(3) (11分)
=- (13分)
=20 (14分)
19解:(1)設(shè)橢圓的半長軸長.半短軸長.半焦距分別為a,b,c,則有
,
由橢圓定義,有 ………1分
=……………………………2分
= ……………………3分
≥ …………………………………………5分
== ……………………………………………6分
∴的最小值為。
(當(dāng)且僅當(dāng)時,即取橢圓上下頂點時,取得最小值 )………………………………………7分
(2)設(shè)的斜率為,
則, …………………………………………8分
…………………………………………9分
∴= 及 …………………………………………10分
則== 又…………………………………………12分
∴ …………………………………………13分
故斜率的取值范圍為() …………………………………………14分
20解:(1),……………………1分
即,
即,, …………………………………………2分
∴為等差數(shù)列, …………………………………………3分
又, …………………………………………4分
∴, …………………………………………5分
∴ …………………………………………7分
(2) …………………………………………8分
當(dāng)時,
…………………………………………11分
,
…………………………………………13分
的整數(shù)部分為18。 …………………………………………14分
21解:(1) ………(1分)
由解得: ………(2分)
當(dāng)或時, ………(3分)
當(dāng)時, ………(4分)
所以,有兩個極值點:
是極大值點,; ………(5分)
是極小值點,。 ………(6分)
(2) 過點做直線,與的圖象的另一個交點為A,則,即 ………(8分)
已知有解,則
解得 ………(10分)
當(dāng)時,; ………(11分)
當(dāng)時,,,
其中當(dāng)時,;………(12分)
當(dāng)時, ……(13分)
所以,對任意的,的最小值為(其中當(dāng)時,).……(14分)
(以上答案和評分標(biāo)準(zhǔn)僅供參考,其它答案,請參照給分)lf
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com