題目列表(包括答案和解析)
已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項和
【解析】第一問,因為由題設(shè)可知
又 故
或,又由題設(shè) 從而
第二問中,
當(dāng)時,,時
故時,
時,
分別討論得到結(jié)論。
由題設(shè)可知
又 故
或,又由題設(shè)
從而……………………4分
(2)
當(dāng)時,,時……………………6分
故時,……8分
時,
……………………10分
綜上可得
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對任意不等式恒成立,
問題等價于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當(dāng)b<1時,;
當(dāng)時,;
當(dāng)b>2時,; ............8分
問題等價于 ........11分
解得b<1 或 或 即,所以實數(shù)b的取值范圍是
已知,設(shè)和是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時,的最小值為3. 當(dāng)a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實數(shù)m的取值范圍是(4,8]
已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運用。第一問中,因為函數(shù)的圖象經(jīng)過P(3,4)點,所以,解得,因為,所以.
(2)問中,對底數(shù)a進行分類討論,利用單調(diào)性求解得到。
(3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .
解:⑴∵函數(shù)的圖象經(jīng)過∴,即. … 2分
又,所以. ………… 4分
⑵當(dāng)時,;
當(dāng)時,. ……………… 6分
因為,,
當(dāng)時,在上為增函數(shù),∵,∴.
即.當(dāng)時,在上為減函數(shù),
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
已知函數(shù)=.
(Ⅰ)當(dāng)時,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當(dāng)時,=,
當(dāng)≤2時,由≥3得,解得≤1;
當(dāng)2<<3時,≥3,無解;
當(dāng)≥3時,由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當(dāng)∈[1,2]時,==2,
∴,有條件得且,即,
故滿足條件的的取值范圍為[-3,0]
1.(共12 分)解:(I),,
= ?
2分
4分
= . 5分
又 6分
函數(shù)的最大值為. 7分
當(dāng)且僅當(dāng)(Z)時,函數(shù)取得最大值為.
(II)由(Z), 9分
得 (Z). 11分
函數(shù)的單調(diào)遞增區(qū)間為[](Z). 12
2.解:(Ⅰ) 選手甲答道題進入決賽的概率為; ……………1分
選手甲答道題進入決賽的概率為;…………………………3分
選手甲答5道題進入決賽的概率為; …………………5分
∴選手甲可進入決賽的概率++. …………………7分
(Ⅱ)依題意,的可能取值為.則有,
,
, …………………………10分
因此,有
ξ
3
4
5
P
. ……………………………12分
3.(共12分)解法一:
解:(Ⅰ)且平面.-------------2分
為在平面內(nèi)的射影. --------3分
又⊥, ∴⊥. ----------4分
(Ⅱ) 由(Ⅰ)⊥,又⊥,
∴為所求二面角的平面角. -------6分
又∵==4,
∴=4 . ∵=2 , ∴=60°. -------8分
即二面角大小為60°.
(Ⅲ)過作于D,連結(jié),
由(Ⅱ)得平面平面,又平面,
∴平面平面,且平面平面,
∴平面.
∴為在平面內(nèi)的射影.
. --------10分
在中,,
在中,,.
∴ =. ------------11分
所以直線與平面所成角的大小為. ----12分
解法二:解:(Ⅰ)由已知,
以點為原點,建立如圖所示的空間直角坐標系.
則 ,. -------2分
則,.
.
. ----------------4分
(Ⅱ),平面.
是平面的法向量. -------5分
設(shè)側(cè)面的法向量為,
,.
,
.令則.
則得平面的一個法向量. ---------6分
.
即二面角大小為60°. ----------8分
(Ⅲ)由(II)可知是平面的一個法向量. --------10分
又, . -----11分
所以直線與平面所成角為 ---------12分
4.解:(I)函數(shù)
當(dāng) …………2分
當(dāng)x變化時,的變化情況如下:
―
0
+
極小值
由上表可知,函數(shù);
單調(diào)遞增區(qū)間是
極小值是 …………6分
(II)由 …………7分
又函數(shù)為[1,4]上單調(diào)減函數(shù),
則在[1,4]上恒成立,所以不等式在[1,4]上恒成立.
即在[1,4]上恒成立. …………10分
又在[1,4]為減函數(shù),
所以
所以 …………12分
5.解:橢圓的左、右焦點分別為、 , ……2分
又, , ………3分
解得,
橢圓的方程為 . ………4分
(Ⅱ)由,得.
設(shè)點、的坐標分別為、,則……5分
.
(1)當(dāng)時,點、關(guān)于原點對稱,則.
(2)當(dāng)時,點、不關(guān)于原點對稱,則,
由,得 即
點在橢圓上,有,
化簡,得.
,有.………………① ……………7分
又,
由,得.……………………………②
將①、②兩式,得.
,,則且.
綜合(1)、(2)兩種情況,得實數(shù)的取值范圍是. ………………8分
(Ⅲ),點到直線的距離,
的面積
. ………………………… 10分
由①有,代入上式并化簡,得.
,. ……………………… 11分
當(dāng)且僅當(dāng),即時,等號成立.
當(dāng)時,的面積最大,最大值為. ……………………… 12分
6.解:(1)
……………………4分
(2)的對稱軸垂直于x軸,且頂點為Pn,
∴設(shè)的方程為
把,
∴的方程為
∵……………………6分
∴
∴
=…………………………8分
(3)
∴S中最大數(shù)a1=-17.…………………………10分
設(shè)公差為d,則a10=
由此得
又∵∴∴
∴……………………12分
本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn
2009屆新課標數(shù)學(xué)考點預(yù)測(26):函數(shù)與方程的思想方法
《2009年新課標考試大綱》明確指出“數(shù)學(xué)知識是指《普通高中數(shù)學(xué)課程標準(實驗)》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法”。其中數(shù)學(xué)思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結(jié)合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉(zhuǎn)化與化歸的思想方法、 必然與或然的思想方法。數(shù)學(xué)思想方法是對數(shù)學(xué)知識內(nèi)容和方法的本質(zhì)認識,是對數(shù)學(xué)的規(guī)律性的理性認識。高考通過對數(shù)學(xué)思想方法的考查,能夠最有效地檢測學(xué)生對數(shù)學(xué)知識的理解和掌握程度,能夠最有效地反映出學(xué)生對數(shù)學(xué)各部分內(nèi)容的銜接、綜合和滲透的能力!犊荚嚧缶V》對數(shù)學(xué)考查的要求是“數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)” 。而數(shù)學(xué)思想方法起著重要橋梁連接和支稱作用,“對數(shù)學(xué)思想方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學(xué)知識相結(jié)合,通過數(shù)學(xué)知識的考查,反映考生對數(shù)學(xué)思想方法的掌握程度” ! 數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想方法的考查,注重對數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求! 數(shù)學(xué)的思想方法滲透到數(shù)學(xué)的各個角落,無處不在,有些題目還要考查多個數(shù)學(xué)思想。在高考復(fù)習(xí)時,要充分認識數(shù)學(xué)思想在提高解題能力的重要性,在復(fù)習(xí)中要有意識地滲透這些數(shù)學(xué)思想,提升數(shù)學(xué)思想。
一、函數(shù)與方程的思想
所謂函數(shù)的思想,就是用運動和變化的觀點、集合對應(yīng)的思想,去分析和研究數(shù)學(xué)問題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù)。運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決,函數(shù)思想是對函數(shù)概念的本質(zhì)認識,用于指導(dǎo)解題就是要善于利用函數(shù)知識或函數(shù)觀點去觀察分析處理問題。
所謂方程的思想就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程(組),或者運用方程的性質(zhì)去分析轉(zhuǎn)化問題使問題獲得解決,方程思想是對方程概念的本質(zhì)認識,用于指導(dǎo)解題就是利用方程或方程觀點觀察處理問題。函數(shù)思想與方程思想是密不可分的,可以相互轉(zhuǎn)化的。
函數(shù)和方程的思想是最重要和最常用的數(shù)學(xué)思想,它貫穿于整個高中教學(xué)中,中學(xué)數(shù)學(xué)中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結(jié)為函數(shù),尤其是導(dǎo)數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學(xué)教學(xué)中注重函數(shù)與方程的思想是相當(dāng)重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點來考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運算,而在解答題中,則從更深的層次,在知識的網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相綜合的角度進行深入考查。
1、利用函數(shù)與方程的性質(zhì)解題
例1.(2008安徽卷,理,11)若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有( )
A. B.
C.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com