[答案]由于..均為正實(shí)數(shù). 查看更多

 

題目列表(包括答案和解析)

已知 100m=5,10n=2.
(1)求 2m+n的值;
(2)x1、x2、…、x10均為正實(shí)數(shù),若函數(shù)f(x)=logax(a>0且a≠1),且f(x1•x2•…•x10)=2m+n,求f(x12)+f(x22)+…+f(x102)的值.

查看答案和解析>>

設(shè)x、y均為正實(shí)數(shù),且
1
2+x
+
1
2+y
=
1
3
,則xy的最小值為
 

查看答案和解析>>

已知
2+
2
3
=2•
2
3
,
3+
3
8
=3•
3
8
,
4+
4
15
=4•
4
15
,….若
8+
a
t
=8•
a
t
(a,t均為正實(shí)數(shù)),類比以上等式,可推測(cè)a,t的值,則a+t=
 

查看答案和解析>>

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于N,過
N點(diǎn)的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實(shí)數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至點(diǎn)E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

1.(共12 分)解:(I)6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e ?6ec8aac122bd4f6e

6ec8aac122bd4f6e                                     2分

6ec8aac122bd4f6e                                                 4分

6ec8aac122bd4f6e= 6ec8aac122bd4f6e.                                                     5分

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e                               6分             

函數(shù)6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e.                                             7分

當(dāng)且僅當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6eZ)時(shí),函數(shù)6ec8aac122bd4f6e取得最大值為6ec8aac122bd4f6e.

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6eZ),                          9分

6ec8aac122bd4f6e  (6ec8aac122bd4f6eZ).                                   11分

函數(shù)6ec8aac122bd4f6e的單調(diào)遞增區(qū)間為[6ec8aac122bd4f6e](6ec8aac122bd4f6eZ).                     12

2.解:(Ⅰ) 選手甲答6ec8aac122bd4f6e道題進(jìn)入決賽的概率為6ec8aac122bd4f6e;    ……………1分

選手甲答6ec8aac122bd4f6e道題進(jìn)入決賽的概率為6ec8aac122bd4f6e;…………………………3分

選手甲答5道題進(jìn)入決賽的概率為6ec8aac122bd4f6e;   …………………5分

∴選手甲可進(jìn)入決賽的概率6ec8aac122bd4f6e+6ec8aac122bd4f6e+6ec8aac122bd4f6e6ec8aac122bd4f6e.        …………………7分

   (Ⅱ)依題意,6ec8aac122bd4f6e的可能取值為6ec8aac122bd4f6e.則有6ec8aac122bd4f6e,               

6ec8aac122bd4f6e,       

6ec8aac122bd4f6e, …………………………10分

因此,有

ξ

3

4

5

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e.          ……………………………12分

3.(共12分)解法一:

解:(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.-------------2分                 

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內(nèi)的射影.         --------3分                                            

6ec8aac122bd4f6e6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e6ec8aac122bd4f6e.            ----------4分

(Ⅱ) 由(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e為所求二面角的平面角.         -------6分

又∵6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=4,

6ec8aac122bd4f6e=4 .  ∵6ec8aac122bd4f6e=2 , ∴6ec8aac122bd4f6e=60°. -------8分

即二面角6ec8aac122bd4f6e大小為60°.

(Ⅲ)過6ec8aac122bd4f6e6ec8aac122bd4f6e于D,連結(jié)6ec8aac122bd4f6e,            

由(Ⅱ)得平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,且平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內(nèi)的射影.

6ec8aac122bd4f6e. --------10分

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e =6ec8aac122bd4f6e.                       ------------11分                       

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角的大小為6ec8aac122bd4f6e.         ----12分               

解法二:解:(Ⅰ)由已知6ec8aac122bd4f6e

6ec8aac122bd4f6e點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系6ec8aac122bd4f6e.                             

6ec8aac122bd4f6e,6ec8aac122bd4f6e.            -------2分  

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e.     

6ec8aac122bd4f6e.       ----------------4分

   (Ⅱ)6ec8aac122bd4f6e,6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量. -------5分

設(shè)側(cè)面6ec8aac122bd4f6e的法向量為6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

   6ec8aac122bd4f6e   6ec8aac122bd4f6e.令6ec8aac122bd4f6e6ec8aac122bd4f6e.

則得平面6ec8aac122bd4f6e的一個(gè)法向量6ec8aac122bd4f6e6ec8aac122bd4f6e.               ---------6分

6ec8aac122bd4f6e.       

即二面角6ec8aac122bd4f6e大小為60°.     ----------8分

(Ⅲ)由(II)可知6ec8aac122bd4f6e6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個(gè)法向量.     --------10分

6ec8aac122bd4f6e, 6ec8aac122bd4f6e6ec8aac122bd4f6e.   -----11分                    

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角為6ec8aac122bd4f6e           ---------12分

4.解:(I)函數(shù)6ec8aac122bd4f6e

    當(dāng)6ec8aac122bd4f6e  …………2分

    當(dāng)x變化時(shí),6ec8aac122bd4f6e的變化情況如下:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

0

+

6ec8aac122bd4f6e

6ec8aac122bd4f6e

極小值

6ec8aac122bd4f6e

    由上表可知,函數(shù)6ec8aac122bd4f6e

    單調(diào)遞增區(qū)間是6ec8aac122bd4f6e

    極小值是6ec8aac122bd4f6e         …………6分

   (II)由6ec8aac122bd4f6e      …………7分

    又函數(shù)6ec8aac122bd4f6e為[1,4]上單調(diào)減函數(shù),

    則6ec8aac122bd4f6e在[1,4]上恒成立,所以不等式6ec8aac122bd4f6e在[1,4]上恒成立.

    即6ec8aac122bd4f6e在[1,4]上恒成立.            …………10分

    又6ec8aac122bd4f6e在[1,4]為減函數(shù),

    所以6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e                   …………12分

5.解:橢圓6ec8aac122bd4f6e的左、右焦點(diǎn)分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e ,         ……2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e  ,      6ec8aac122bd4f6e………3分

解得6ec8aac122bd4f6e,                   

6ec8aac122bd4f6e橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e .                       ………4分

   (Ⅱ)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e

設(shè)點(diǎn)6ec8aac122bd4f6e6ec8aac122bd4f6e的坐標(biāo)分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e,則6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e

   (1)當(dāng)6ec8aac122bd4f6e時(shí),點(diǎn)6ec8aac122bd4f6e、6ec8aac122bd4f6e關(guān)于原點(diǎn)對(duì)稱,則6ec8aac122bd4f6e

   (2)當(dāng)6ec8aac122bd4f6e時(shí),點(diǎn)6ec8aac122bd4f6e6ec8aac122bd4f6e不關(guān)于原點(diǎn)對(duì)稱,則6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e       即6ec8aac122bd4f6e

6ec8aac122bd4f6e點(diǎn)6ec8aac122bd4f6e在橢圓上,6ec8aac122bd4f6e6ec8aac122bd4f6e,

化簡(jiǎn),得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e.………………①         ……………7分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e.……………………………②    

將①、②兩式,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合(1)、(2)兩種情況,得實(shí)數(shù)6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e. ………………8分

(Ⅲ)6ec8aac122bd4f6e,點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離6ec8aac122bd4f6e,

6ec8aac122bd4f6e的面積6ec8aac122bd4f6e6ec8aac122bd4f6e

                6ec8aac122bd4f6e.           ………………………… 10分

由①有6ec8aac122bd4f6e,代入上式并化簡(jiǎn),得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e.                    ……………………… 11分

當(dāng)且僅當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e時(shí),等號(hào)成立.

6ec8aac122bd4f6e當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e的面積最大,最大值為6ec8aac122bd4f6e. ……………………… 12分

6.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………4分

(2)6ec8aac122bd4f6e的對(duì)稱軸垂直于x軸,且頂點(diǎn)為Pn,

∴設(shè)6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

=6ec8aac122bd4f6e…………………………8分

(3)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴S6ec8aac122bd4f6e中最大數(shù)a1=-17.…………………………10分

設(shè)6ec8aac122bd4f6e公差為d,則a10=6ec8aac122bd4f6e

由此得6ec8aac122bd4f6e

又∵6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………12分

本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn

2009屆新課標(biāo)數(shù)學(xué)考點(diǎn)預(yù)測(cè)(26):函數(shù)與方程的思想方法

《2009年新課標(biāo)考試大綱》明確指出“數(shù)學(xué)知識(shí)是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法”。其中數(shù)學(xué)思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結(jié)合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉(zhuǎn)化與化歸的思想方法、 必然與或然的思想方法。數(shù)學(xué)思想方法是對(duì)數(shù)學(xué)知識(shí)內(nèi)容和方法的本質(zhì)認(rèn)識(shí),是對(duì)數(shù)學(xué)的規(guī)律性的理性認(rèn)識(shí)。高考通過對(duì)數(shù)學(xué)思想方法的考查,能夠最有效地檢測(cè)學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解和掌握程度,能夠最有效地反映出學(xué)生對(duì)數(shù)學(xué)各部分內(nèi)容的銜接、綜合和滲透的能力。《考試大綱》對(duì)數(shù)學(xué)考查的要求是“數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)” 。而數(shù)學(xué)思想方法起著重要橋梁連接和支稱作用,“對(duì)數(shù)學(xué)思想方法的考查是對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)必須要與數(shù)學(xué)知識(shí)相結(jié)合,通過數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想方法的掌握程度” ! 數(shù)學(xué)科的命題,在考查基礎(chǔ)知識(shí)的基礎(chǔ)上,注重對(duì)數(shù)學(xué)思想方法的考查,注重對(duì)數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,同時(shí)兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅(jiān)持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求! 數(shù)學(xué)的思想方法滲透到數(shù)學(xué)的各個(gè)角落,無處不在,有些題目還要考查多個(gè)數(shù)學(xué)思想。在高考復(fù)習(xí)時(shí),要充分認(rèn)識(shí)數(shù)學(xué)思想在提高解題能力的重要性,在復(fù)習(xí)中要有意識(shí)地滲透這些數(shù)學(xué)思想,提升數(shù)學(xué)思想。

一、函數(shù)與方程的思想

所謂函數(shù)的思想,就是用運(yùn)動(dòng)和變化的觀點(diǎn)、集合對(duì)應(yīng)的思想,去分析和研究數(shù)學(xué)問題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù)。運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決,函數(shù)思想是對(duì)函數(shù)概念的本質(zhì)認(rèn)識(shí),用于指導(dǎo)解題就是要善于利用函數(shù)知識(shí)或函數(shù)觀點(diǎn)去觀察分析處理問題。

所謂方程的思想就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程(組),或者運(yùn)用方程的性質(zhì)去分析轉(zhuǎn)化問題使問題獲得解決,方程思想是對(duì)方程概念的本質(zhì)認(rèn)識(shí),用于指導(dǎo)解題就是利用方程或方程觀點(diǎn)觀察處理問題。函數(shù)思想與方程思想是密不可分的,可以相互轉(zhuǎn)化的。

函數(shù)和方程的思想是最重要和最常用的數(shù)學(xué)思想,它貫穿于整個(gè)高中教學(xué)中,中學(xué)數(shù)學(xué)中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結(jié)為函數(shù),尤其是導(dǎo)數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學(xué)教學(xué)中注重函數(shù)與方程的思想是相當(dāng)重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點(diǎn)來考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運(yùn)算,而在解答題中,則從更深的層次,在知識(shí)的網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相綜合的角度進(jìn)行深入考查。

1、利用函數(shù)與方程的性質(zhì)解題

例1.(2008安徽卷,理,11)若函數(shù)6ec8aac122bd4f6e分別是6ec8aac122bd4f6e上的奇函數(shù)、偶函數(shù),且滿足6ec8aac122bd4f6e,則有(    )

A.6ec8aac122bd4f6e                 B.6ec8aac122bd4f6e

C.6ec8aac122bd4f6e


同步練習(xí)冊(cè)答案