解:從組合數(shù)定義有: 查看更多

 

題目列表(包括答案和解析)

楊輝是中國南宋末年的一位杰出的數(shù)學家、數(shù)學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數(shù)的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為
2
3
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學公式表示上述結論,并給予證明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11階楊輝三角

查看答案和解析>>

某市發(fā)行一種電腦彩票,從1到35這35個數(shù)中任選7個不同的數(shù)作為一注,開獎號碼為從35個數(shù)中抽出7個不同的數(shù),若購買的一注號碼與這7個數(shù)字完全相同,即中一等獎;若購買的一注號碼中有且僅有6個數(shù)與這7個數(shù)中的6個數(shù)字相同,即中二等獎;若購買的一注號碼中有且僅有5個數(shù)與這7個數(shù)中的5個數(shù)字相同,即中三等獎.
(1)隨機購買一注彩票中一等獎的概率是多少?隨機購買一注彩票能中獎的概率是多少?(結果可以用含組合數(shù)的分數(shù)表示)
(2)從問題(1)得到啟發(fā),試判斷組合數(shù)Ckl•Cn-km-l與Cnm的大小關系,并從組合的意義角度加以解釋.

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數(shù)學家、數(shù)學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數(shù)的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖所示是一個11階楊輝三角:

(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為
23
,求n的值;
(3)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m,k(m,k∈N*)的數(shù)學公式表示上述結論,并給予證明.

查看答案和解析>>

從集合{1,2,3,4,5}中任取三個元素構成三元有序數(shù)組(a1,a2,a3),規(guī)定a1<a2<a3
(1)從所有的三元有序數(shù)組中任選一個,求它的所有元素之和等于10的概率
(2)定義三元有序數(shù)組(a1,a2,a3)的“項標距離”為d=
3
i=1
|ai-i|
(其中
n
i=1
xi=x1+x2+…+xn
),從所有的三元有序數(shù)組中任選一個,求它的“項標距離”d為偶數(shù)的概率.

查看答案和解析>>

從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有C
 
m
n+1
種取法,在這C
 
m
n+1
種取法中,可以分為兩類:一類是取出的m個球全部為白球,另一類是取出的m個球中有1個黑球,共有C
 
0
1
•C
 
m
n
+C
 
1
1
•C
 
m-1
n
=C
 
0
1
•C
 
m
n+1
種取法,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.試根據(jù)上述思想可得C
 
0
5
•C
 
4
15
+C
 
1
5
•C
 
3
15
+C
 
2
5
•C
 
2
15
+C
 
3
5
•C
 
1
15
+C
 
4
5
•C
 
0
15
=
C
 
4
20
C
 
4
20
(用組合數(shù)表示)

查看答案和解析>>

1.(共12 分)解:(I)6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e ?6ec8aac122bd4f6e

6ec8aac122bd4f6e                                     2分

6ec8aac122bd4f6e                                                 4分

6ec8aac122bd4f6e= 6ec8aac122bd4f6e.                                                     5分

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e                               6分             

函數(shù)6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e.                                             7分

當且僅當6ec8aac122bd4f6e6ec8aac122bd4f6eZ)時,函數(shù)6ec8aac122bd4f6e取得最大值為6ec8aac122bd4f6e.

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6eZ),                          9分

6ec8aac122bd4f6e  (6ec8aac122bd4f6eZ).                                   11分

函數(shù)6ec8aac122bd4f6e的單調遞增區(qū)間為[6ec8aac122bd4f6e](6ec8aac122bd4f6eZ).                     12

2.解:(Ⅰ) 選手甲答6ec8aac122bd4f6e道題進入決賽的概率為6ec8aac122bd4f6e;    ……………1分

選手甲答6ec8aac122bd4f6e道題進入決賽的概率為6ec8aac122bd4f6e;…………………………3分

選手甲答5道題進入決賽的概率為6ec8aac122bd4f6e;   …………………5分

∴選手甲可進入決賽的概率6ec8aac122bd4f6e+6ec8aac122bd4f6e+6ec8aac122bd4f6e6ec8aac122bd4f6e.        …………………7分

   (Ⅱ)依題意,6ec8aac122bd4f6e的可能取值為6ec8aac122bd4f6e.則有6ec8aac122bd4f6e,               

6ec8aac122bd4f6e,       

6ec8aac122bd4f6e, …………………………10分

因此,有

ξ

3

4

5

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e.          ……………………………12分

3.(共12分)解法一:

解:(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.-------------2分                 

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內的射影.         --------3分                                            

6ec8aac122bd4f6e6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e6ec8aac122bd4f6e.            ----------4分

(Ⅱ) 由(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e為所求二面角的平面角.         -------6分

又∵6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=4,

6ec8aac122bd4f6e=4 .  ∵6ec8aac122bd4f6e=2 , ∴6ec8aac122bd4f6e=60°. -------8分

即二面角6ec8aac122bd4f6e大小為60°.

(Ⅲ)過6ec8aac122bd4f6e6ec8aac122bd4f6e于D,連結6ec8aac122bd4f6e,            

由(Ⅱ)得平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,且平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內的射影.

6ec8aac122bd4f6e. --------10分

6ec8aac122bd4f6e中,6ec8aac122bd4f6e

6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e =6ec8aac122bd4f6e.                       ------------11分                       

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角的大小為6ec8aac122bd4f6e.         ----12分               

解法二:解:(Ⅰ)由已知6ec8aac122bd4f6e,

6ec8aac122bd4f6e點為原點,建立如圖所示的空間直角坐標系6ec8aac122bd4f6e.                             

6ec8aac122bd4f6e,6ec8aac122bd4f6e.            -------2分  

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e.     

6ec8aac122bd4f6e.       ----------------4分

   (Ⅱ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量. -------5分

設側面6ec8aac122bd4f6e的法向量為6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

   6ec8aac122bd4f6e   6ec8aac122bd4f6e.令6ec8aac122bd4f6e6ec8aac122bd4f6e.

則得平面6ec8aac122bd4f6e的一個法向量6ec8aac122bd4f6e6ec8aac122bd4f6e.               ---------6分

6ec8aac122bd4f6e.       

即二面角6ec8aac122bd4f6e大小為60°.     ----------8分

(Ⅲ)由(II)可知6ec8aac122bd4f6e6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量.     --------10分

6ec8aac122bd4f6e, 6ec8aac122bd4f6e6ec8aac122bd4f6e.   -----11分                    

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角為6ec8aac122bd4f6e           ---------12分

4.解:(I)函數(shù)6ec8aac122bd4f6e

    當6ec8aac122bd4f6e  …………2分

    當x變化時,6ec8aac122bd4f6e的變化情況如下:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

0

+

6ec8aac122bd4f6e

6ec8aac122bd4f6e

極小值

6ec8aac122bd4f6e

    由上表可知,函數(shù)6ec8aac122bd4f6e;

    單調遞增區(qū)間是6ec8aac122bd4f6e

    極小值是6ec8aac122bd4f6e         …………6分

   (II)由6ec8aac122bd4f6e      …………7分

    又函數(shù)6ec8aac122bd4f6e為[1,4]上單調減函數(shù),

    則6ec8aac122bd4f6e在[1,4]上恒成立,所以不等式6ec8aac122bd4f6e在[1,4]上恒成立.

    即6ec8aac122bd4f6e在[1,4]上恒成立.            …………10分

    又6ec8aac122bd4f6e在[1,4]為減函數(shù),

    所以6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e                   …………12分

5.解:橢圓6ec8aac122bd4f6e的左、右焦點分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e ,         ……2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e  ,      6ec8aac122bd4f6e………3分

解得6ec8aac122bd4f6e,                   

6ec8aac122bd4f6e橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e .                       ………4分

   (Ⅱ)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e

設點6ec8aac122bd4f6e、6ec8aac122bd4f6e的坐標分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e,則6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e

   (1)當6ec8aac122bd4f6e時,點6ec8aac122bd4f6e、6ec8aac122bd4f6e關于原點對稱,則6ec8aac122bd4f6e

   (2)當6ec8aac122bd4f6e時,點6ec8aac122bd4f6e6ec8aac122bd4f6e不關于原點對稱,則6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e       即6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e在橢圓上,6ec8aac122bd4f6e6ec8aac122bd4f6e

化簡,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e.………………①         ……………7分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e.……………………………②    

將①、②兩式,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合(1)、(2)兩種情況,得實數(shù)6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e. ………………8分

(Ⅲ)6ec8aac122bd4f6e,點6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離6ec8aac122bd4f6e,

6ec8aac122bd4f6e的面積6ec8aac122bd4f6e6ec8aac122bd4f6e

                6ec8aac122bd4f6e.           ………………………… 10分

由①有6ec8aac122bd4f6e,代入上式并化簡,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e.                    ……………………… 11分

當且僅當6ec8aac122bd4f6e,即6ec8aac122bd4f6e時,等號成立.

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e的面積最大,最大值為6ec8aac122bd4f6e. ……………………… 12分

6.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………4分

(2)6ec8aac122bd4f6e的對稱軸垂直于x軸,且頂點為Pn,

∴設6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

=6ec8aac122bd4f6e…………………………8分

(3)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴S6ec8aac122bd4f6e中最大數(shù)a1=-17.…………………………10分

6ec8aac122bd4f6e公差為d,則a10=6ec8aac122bd4f6e

由此得6ec8aac122bd4f6e

又∵6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………12分

本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn

2009屆新課標數(shù)學考點預測(26):函數(shù)與方程的思想方法

《2009年新課標考試大綱》明確指出“數(shù)學知識是指《普通高中數(shù)學課程標準(實驗)》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學概念、性質、法則、公式、公理、定理以及由其內容反映的數(shù)學思想方法”。其中數(shù)學思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉化與化歸的思想方法、 必然與或然的思想方法。數(shù)學思想方法是對數(shù)學知識內容和方法的本質認識,是對數(shù)學的規(guī)律性的理性認識。高考通過對數(shù)學思想方法的考查,能夠最有效地檢測學生對數(shù)學知識的理解和掌握程度,能夠最有效地反映出學生對數(shù)學各部分內容的銜接、綜合和滲透的能力!犊荚嚧缶V》對數(shù)學考查的要求是“數(shù)學學科的系統(tǒng)性和嚴密性決定了數(shù)學知識之間深刻的內在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構建數(shù)學試卷的框架結構” 。而數(shù)學思想方法起著重要橋梁連接和支稱作用,“對數(shù)學思想方法的考查是對數(shù)學知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學知識相結合,通過數(shù)學知識的考查,反映考生對數(shù)學思想方法的掌握程度” ! 數(shù)學科的命題,在考查基礎知識的基礎上,注重對數(shù)學思想方法的考查,注重對數(shù)學能力的考查,展現(xiàn)數(shù)學的科學價值和人文價值,同時兼顧試題的基礎性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學素養(yǎng)的要求! 數(shù)學的思想方法滲透到數(shù)學的各個角落,無處不在,有些題目還要考查多個數(shù)學思想。在高考復習時,要充分認識數(shù)學思想在提高解題能力的重要性,在復習中要有意識地滲透這些數(shù)學思想,提升數(shù)學思想。

一、函數(shù)與方程的思想

所謂函數(shù)的思想,就是用運動和變化的觀點、集合對應的思想,去分析和研究數(shù)學問題中的數(shù)量關系,建立函數(shù)關系或構造函數(shù)。運用函數(shù)的圖像和性質去分析問題、轉化問題,從而使問題獲得解決,函數(shù)思想是對函數(shù)概念的本質認識,用于指導解題就是要善于利用函數(shù)知識或函數(shù)觀點去觀察分析處理問題。

所謂方程的思想就是分析數(shù)學問題中變量間的等量關系,建立方程或方程組,或者構造方程,通過解方程(組),或者運用方程的性質去分析轉化問題使問題獲得解決,方程思想是對方程概念的本質認識,用于指導解題就是利用方程或方程觀點觀察處理問題。函數(shù)思想與方程思想是密不可分的,可以相互轉化的。

函數(shù)和方程的思想是最重要和最常用的數(shù)學思想,它貫穿于整個高中教學中,中學數(shù)學中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結為函數(shù),尤其是導數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學教學中注重函數(shù)與方程的思想是相當重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點來考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運算,而在解答題中,則從更深的層次,在知識的網(wǎng)絡的交匯處,從思想方法與相關能力相綜合的角度進行深入考查。

1、利用函數(shù)與方程的性質解題

例1.(2008安徽卷,理,11)若函數(shù)6ec8aac122bd4f6e分別是6ec8aac122bd4f6e上的奇函數(shù)、偶函數(shù),且滿足6ec8aac122bd4f6e,則有(    )

A.6ec8aac122bd4f6e                 B.6ec8aac122bd4f6e

C.6ec8aac122bd4f6e


同步練習冊答案