題目列表(包括答案和解析)
解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此
解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。
15.解:根據(jù)條件去畫滿足條件的二次函數(shù)圖象就可判斷出
某大型超市為促銷商品,特舉辦“購物搖獎(jiǎng)100%中獎(jiǎng)”活動,凡消費(fèi)者在該超市購物滿20元,享受一次搖獎(jiǎng)機(jī)會,購物滿40元,享受兩次搖獎(jiǎng)機(jī)會,依次類推。搖獎(jiǎng)機(jī)的旋轉(zhuǎn)圓盤是均勻的,扇形區(qū)域A、B、C、D、E所對應(yīng)的圓心角的比值分別為1:2:3:4:5。相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎(jiǎng),獎(jiǎng)金分別為5元、4元、3元、2元、1元。求某人購物30元,獲得獎(jiǎng)金的分布列.
解:能否投中,那得看拋物線與籃圈所在直線是否有交點(diǎn)。因?yàn)楹瘮?shù)的零點(diǎn)是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價(jià)為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足1km的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時(shí)間要轉(zhuǎn)換成行車路程(這個(gè)城市規(guī)定,每停車5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車路程ξ是一個(gè)隨機(jī)變量,
(1)他收旅客的租車費(fèi)η是否也是一個(gè)隨機(jī)變量?如果是,找出租車費(fèi)η與行車路程ξ的關(guān)系式;
(2)已知某旅客實(shí)付租車費(fèi)38元,而出租汽車實(shí)際行駛了15km,問出租車在途中因故停車?yán)塾?jì)最多幾分鐘?這種情況下,停車?yán)塾?jì)時(shí)間是否也是一個(gè)隨機(jī)變量?
|
16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,
這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)
(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關(guān)于原點(diǎn)對稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對。所以正確的只有(2)
為了考察高中生學(xué)習(xí)語文與數(shù)學(xué)之間的關(guān)系,在某中學(xué)學(xué)生中隨機(jī)地抽取了610名學(xué)生得到如下列表:
語文 數(shù)學(xué) | 及格 | 不及格 | 總計(jì) |
及格 | 310 | 142 | 452 |
不及格 | 94 | 64 | 158 |
總計(jì) | 404 | 206 | 610 |
由表中數(shù)據(jù)計(jì)算及的觀測值問在多大程度上可以認(rèn)為高中生的語文與數(shù)學(xué)成績之間有關(guān)系?為什么?
1.(共12 分)解:(I),,
= ?
2分
4分
= . 5分
又 6分
函數(shù)的最大值為. 7分
當(dāng)且僅當(dāng)(Z)時(shí),函數(shù)取得最大值為.
(II)由(Z), 9分
得 (Z). 11分
函數(shù)的單調(diào)遞增區(qū)間為[](Z). 12
2.解:(Ⅰ) 選手甲答道題進(jìn)入決賽的概率為; ……………1分
選手甲答道題進(jìn)入決賽的概率為;…………………………3分
選手甲答5道題進(jìn)入決賽的概率為; …………………5分
∴選手甲可進(jìn)入決賽的概率++. …………………7分
(Ⅱ)依題意,的可能取值為.則有,
,
, …………………………10分
因此,有
ξ
3
4
5
P
. ……………………………12分
3.(共12分)解法一:
解:(Ⅰ)且平面.-------------2分
為在平面內(nèi)的射影. --------3分
又⊥, ∴⊥. ----------4分
(Ⅱ) 由(Ⅰ)⊥,又⊥,
∴為所求二面角的平面角. -------6分
又∵==4,
∴=4 . ∵=2 , ∴=60°. -------8分
即二面角大小為60°.
(Ⅲ)過作于D,連結(jié),
由(Ⅱ)得平面平面,又平面,
∴平面平面,且平面平面,
∴平面.
∴為在平面內(nèi)的射影.
. --------10分
在中,,
在中,,.
∴ =. ------------11分
所以直線與平面所成角的大小為. ----12分
解法二:解:(Ⅰ)由已知,
以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
則 ,. -------2分
則,.
.
. ----------------4分
(Ⅱ),平面.
是平面的法向量. -------5分
設(shè)側(cè)面的法向量為,
,.
,
.令則.
則得平面的一個(gè)法向量. ---------6分
.
即二面角大小為60°. ----------8分
(Ⅲ)由(II)可知是平面的一個(gè)法向量. --------10分
又, . -----11分
所以直線與平面所成角為 ---------12分
4.解:(I)函數(shù)
當(dāng) …………2分
當(dāng)x變化時(shí),的變化情況如下:
―
0
+
極小值
由上表可知,函數(shù);
單調(diào)遞增區(qū)間是
極小值是 …………6分
(II)由 …………7分
又函數(shù)為[1,4]上單調(diào)減函數(shù),
則在[1,4]上恒成立,所以不等式在[1,4]上恒成立.
即在[1,4]上恒成立. …………10分
又在[1,4]為減函數(shù),
所以
所以 …………12分
5.解:橢圓的左、右焦點(diǎn)分別為、 , ……2分
又, , ………3分
解得,
橢圓的方程為 . ………4分
(Ⅱ)由,得.
設(shè)點(diǎn)、的坐標(biāo)分別為、,則……5分
.
(1)當(dāng)時(shí),點(diǎn)、關(guān)于原點(diǎn)對稱,則.
(2)當(dāng)時(shí),點(diǎn)、不關(guān)于原點(diǎn)對稱,則,
由,得 即
點(diǎn)在橢圓上,有,
化簡,得.
,有.………………① ……………7分
又,
由,得.……………………………②
將①、②兩式,得.
,,則且.
綜合(1)、(2)兩種情況,得實(shí)數(shù)的取值范圍是. ………………8分
(Ⅲ),點(diǎn)到直線的距離,
的面積
. ………………………… 10分
由①有,代入上式并化簡,得.
,. ……………………… 11分
當(dāng)且僅當(dāng),即時(shí),等號成立.
當(dāng)時(shí),的面積最大,最大值為. ……………………… 12分
6.解:(1)
……………………4分
(2)的對稱軸垂直于x軸,且頂點(diǎn)為Pn,
∴設(shè)的方程為
把,
∴的方程為
∵……………………6分
∴
∴
=…………………………8分
(3)
∴S中最大數(shù)a1=-17.…………………………10分
設(shè)公差為d,則a10=
由此得
又∵∴∴
∴……………………12分
本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn
2009屆新課標(biāo)數(shù)學(xué)考點(diǎn)預(yù)測(26):函數(shù)與方程的思想方法
《2009年新課標(biāo)考試大綱》明確指出“數(shù)學(xué)知識是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法”。其中數(shù)學(xué)思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結(jié)合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉(zhuǎn)化與化歸的思想方法、 必然與或然的思想方法。數(shù)學(xué)思想方法是對數(shù)學(xué)知識內(nèi)容和方法的本質(zhì)認(rèn)識,是對數(shù)學(xué)的規(guī)律性的理性認(rèn)識。高考通過對數(shù)學(xué)思想方法的考查,能夠最有效地檢測學(xué)生對數(shù)學(xué)知識的理解和掌握程度,能夠最有效地反映出學(xué)生對數(shù)學(xué)各部分內(nèi)容的銜接、綜合和滲透的能力。《考試大綱》對數(shù)學(xué)考查的要求是“數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)” 。而數(shù)學(xué)思想方法起著重要橋梁連接和支稱作用,“對數(shù)學(xué)思想方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時(shí)必須要與數(shù)學(xué)知識相結(jié)合,通過數(shù)學(xué)知識的考查,反映考生對數(shù)學(xué)思想方法的掌握程度” ! 數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想方法的考查,注重對數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,同時(shí)兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅(jiān)持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求! 數(shù)學(xué)的思想方法滲透到數(shù)學(xué)的各個(gè)角落,無處不在,有些題目還要考查多個(gè)數(shù)學(xué)思想。在高考復(fù)習(xí)時(shí),要充分認(rèn)識數(shù)學(xué)思想在提高解題能力的重要性,在復(fù)習(xí)中要有意識地滲透這些數(shù)學(xué)思想,提升數(shù)學(xué)思想。
一、函數(shù)與方程的思想
所謂函數(shù)的思想,就是用運(yùn)動和變化的觀點(diǎn)、集合對應(yīng)的思想,去分析和研究數(shù)學(xué)問題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù)。運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決,函數(shù)思想是對函數(shù)概念的本質(zhì)認(rèn)識,用于指導(dǎo)解題就是要善于利用函數(shù)知識或函數(shù)觀點(diǎn)去觀察分析處理問題。
所謂方程的思想就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程(組),或者運(yùn)用方程的性質(zhì)去分析轉(zhuǎn)化問題使問題獲得解決,方程思想是對方程概念的本質(zhì)認(rèn)識,用于指導(dǎo)解題就是利用方程或方程觀點(diǎn)觀察處理問題。函數(shù)思想與方程思想是密不可分的,可以相互轉(zhuǎn)化的。
函數(shù)和方程的思想是最重要和最常用的數(shù)學(xué)思想,它貫穿于整個(gè)高中教學(xué)中,中學(xué)數(shù)學(xué)中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結(jié)為函數(shù),尤其是導(dǎo)數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學(xué)教學(xué)中注重函數(shù)與方程的思想是相當(dāng)重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點(diǎn)來考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運(yùn)算,而在解答題中,則從更深的層次,在知識的網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相綜合的角度進(jìn)行深入考查。
1、利用函數(shù)與方程的性質(zhì)解題
例1.(2008安徽卷,理,11)若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有( )
A. B.
C.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com