[分析及解](I)投擲一次正方體玩具.上底面每個數(shù)字的出現(xiàn)都是等可能的.其概率為因為只投擲一次不可能返回到A點,若投擲兩次點P就恰好能返回到A點.則上底面出現(xiàn)的兩個數(shù)字應(yīng)依次為:三種結(jié)果.其概率為.若投擲三次點P恰能返回到A點.則上底面出現(xiàn)的三個數(shù)字應(yīng)依次為:.三種結(jié)果.其概率為 若投擲四次點P恰能返回到A點.則上底面出現(xiàn)的四個數(shù)字應(yīng)依次為: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)為研究我校高二年級的男生身高,隨機抽取40名男生,實測身高數(shù)據(jù)(單位:厘米)如下:

171      173    163    169    166    167    168.5  160    170    165

175      169    167    156    165.5 168    170    184    168    174

165      170    174    161    177     175.5  173    164    175    171.5

176      159    172    181    175.5  165    163    173    170.5  171

(I)依據(jù)題目提示作出頻率分布表;

(Ⅱ)在(I)的條件下畫出頻率分布直方圖并且畫出其頻率分布折線圖;

(Ⅲ)試利用頻率分布的直方圖估計樣本的平均數(shù)。

【解】(I)最低身高156cm,最高身高184cm,確定組距為4,作頻率分布表如下:

身高(cm)

頻數(shù)累計

頻數(shù)

頻率(%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Ⅱ)頻率直方圖如下:

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小題滿分14分)為研究我校高二年級的男生身高,隨機抽取40名男生,實測身高數(shù)據(jù)(單位:厘米)如下:

171      173    163    169    166    167    168.5  160    170    165

175      169    167    156    165.5 168    170    184    168    174

165      170    174    161    177     175.5  173    164    175    171.5

176      159    172    181    175.5  165    163    173    170.5  171

(I)依據(jù)題目提示作出頻率分布表;

(Ⅱ)在(I)的條件下畫出頻率分布直方圖并且畫出其頻率分布折線圖;

(Ⅲ)試利用頻率分布的直方圖估計樣本的平均數(shù)。

【解】(I)最低身高156cm,最高身高184cm,確定組距為4,作頻率分布表如下:

身高(cm)

頻數(shù)累計

頻數(shù)

頻率(%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Ⅱ)頻率直方圖如下:

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

為研究我校高二年級的男生身高,隨機抽取40名男生,實測身高數(shù)據(jù)(單位:厘米)如下:

171         173         163         169         166         167         168.5      160         170         165

175            169         167         156         165.5     168         170         184         168         174

165            170         174         161         177     175.5      173         164         175         171.5

176            159         172         181         175.5      165         163         173         170.5      171

(I)依據(jù)題目提示作出頻率分布表;

(Ⅱ)在(I)的條件下畫出頻率分布直方圖并且畫出其頻率分布折線圖;

(Ⅲ)試利用頻率分布的直方圖估計樣本的平均數(shù)。

【解】(I)最低身高156cm,最高身高184cm,確定組距為4,作頻率分布表如下:

身高(cm)

頻數(shù)累計

頻數(shù)

頻率(%)

(Ⅱ)頻率直方圖如下:

(Ⅲ)

查看答案和解析>>

為研究我校高二年級的男生身高,隨機抽取40名男生,實測身高數(shù)據(jù)(單位:厘米)如下:

171         173         163         169         166         167         168.5      160         170         165

175            169         167         156         165.5     168         170         184         168         174

165            170         174         161         177     175.5      173         164         175         171.5

176            159         172         181         175.5      165         163         173         170.5      171

(I)依據(jù)題目提示作出頻率分布表;

(Ⅱ)在(I)的條件下畫出頻率分布直方圖并且畫出其頻率分布折線圖;

(Ⅲ)試利用頻率分布的直方圖估計樣本的平均數(shù)。

【解】(I)最低身高156cm,最高身高184cm,確定組距為4,作頻率分布表如下:

身高(cm)

頻數(shù)累計

頻數(shù)

頻率(%)

(Ⅱ)頻率直方圖如下:

(Ⅲ)

查看答案和解析>>

為研究我校高二年級的男生身高,隨機抽取40名男生,實測身高數(shù)據(jù)(單位:厘米)如下:

    171                   173           163               169           166

    167               168.5            160               170           165

    175               169               167               156           165.5

    168               170               184               168           174

    165               170               174               161           177    

    175.5            173               164               175           171.5

    176               159               172               181           175.5

    165               163               173               170.5        171

(I)依據(jù)題目提示作出頻率分布表;

(Ⅱ)在(I)的條件下畫出頻率分布直方圖并且畫出其頻率分布折線圖;

(Ⅲ)試利用頻率分布的直方圖估計樣本的平均數(shù)。

    【解】(I)最低身高156cm,最高身高184cm,確定組距為4,作頻率分布表如下:

身高(cm)

頻數(shù)累計

頻數(shù)

頻率(%)

(Ⅱ)頻率直方圖如下:

(Ⅲ)

查看答案和解析>>

1.(共12 分)解:(I)6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e ?6ec8aac122bd4f6e

6ec8aac122bd4f6e                                     2分

6ec8aac122bd4f6e                                                 4分

6ec8aac122bd4f6e= 6ec8aac122bd4f6e.                                                     5分

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e                               6分             

函數(shù)6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e.                                             7分

當且僅當6ec8aac122bd4f6e6ec8aac122bd4f6eZ)時,函數(shù)6ec8aac122bd4f6e取得最大值為6ec8aac122bd4f6e.

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6eZ),                          9分

6ec8aac122bd4f6e  (6ec8aac122bd4f6eZ).                                   11分

函數(shù)6ec8aac122bd4f6e的單調(diào)遞增區(qū)間為[6ec8aac122bd4f6e](6ec8aac122bd4f6eZ).                     12

2.解:(Ⅰ) 選手甲答6ec8aac122bd4f6e道題進入決賽的概率為6ec8aac122bd4f6e;    ……………1分

選手甲答6ec8aac122bd4f6e道題進入決賽的概率為6ec8aac122bd4f6e;…………………………3分

選手甲答5道題進入決賽的概率為6ec8aac122bd4f6e;   …………………5分

∴選手甲可進入決賽的概率6ec8aac122bd4f6e+6ec8aac122bd4f6e+6ec8aac122bd4f6e6ec8aac122bd4f6e.        …………………7分

   (Ⅱ)依題意,6ec8aac122bd4f6e的可能取值為6ec8aac122bd4f6e.則有6ec8aac122bd4f6e,               

6ec8aac122bd4f6e,       

6ec8aac122bd4f6e, …………………………10分

因此,有

ξ

3

4

5

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e.          ……………………………12分

3.(共12分)解法一:

解:(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.-------------2分                 

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內(nèi)的射影.         --------3分                                            

6ec8aac122bd4f6e6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e6ec8aac122bd4f6e.            ----------4分

(Ⅱ) 由(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e為所求二面角的平面角.         -------6分

又∵6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=4,

6ec8aac122bd4f6e=4 .  ∵6ec8aac122bd4f6e=2 , ∴6ec8aac122bd4f6e=60°. -------8分

即二面角6ec8aac122bd4f6e大小為60°.

(Ⅲ)過6ec8aac122bd4f6e6ec8aac122bd4f6e于D,連結(jié)6ec8aac122bd4f6e,            

由(Ⅱ)得平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,且平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內(nèi)的射影.

6ec8aac122bd4f6e. --------10分

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e =6ec8aac122bd4f6e.                       ------------11分                       

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角的大小為6ec8aac122bd4f6e.         ----12分               

解法二:解:(Ⅰ)由已知6ec8aac122bd4f6e,

6ec8aac122bd4f6e點為原點,建立如圖所示的空間直角坐標系6ec8aac122bd4f6e.                             

6ec8aac122bd4f6e,6ec8aac122bd4f6e.            -------2分  

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e.     

6ec8aac122bd4f6e.       ----------------4分

   (Ⅱ)6ec8aac122bd4f6e,6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量. -------5分

設(shè)側(cè)面6ec8aac122bd4f6e的法向量為6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

   6ec8aac122bd4f6e   6ec8aac122bd4f6e.令6ec8aac122bd4f6e6ec8aac122bd4f6e.

則得平面6ec8aac122bd4f6e的一個法向量6ec8aac122bd4f6e6ec8aac122bd4f6e.               ---------6分

6ec8aac122bd4f6e.       

即二面角6ec8aac122bd4f6e大小為60°.     ----------8分

(Ⅲ)由(II)可知6ec8aac122bd4f6e6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量.     --------10分

6ec8aac122bd4f6e, 6ec8aac122bd4f6e6ec8aac122bd4f6e.   -----11分                    

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角為6ec8aac122bd4f6e           ---------12分

4.解:(I)函數(shù)6ec8aac122bd4f6e

    當6ec8aac122bd4f6e  …………2分

    當x變化時,6ec8aac122bd4f6e的變化情況如下:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

0

+

6ec8aac122bd4f6e

6ec8aac122bd4f6e

極小值

6ec8aac122bd4f6e

    由上表可知,函數(shù)6ec8aac122bd4f6e;

    單調(diào)遞增區(qū)間是6ec8aac122bd4f6e

    極小值是6ec8aac122bd4f6e         …………6分

   (II)由6ec8aac122bd4f6e      …………7分

    又函數(shù)6ec8aac122bd4f6e為[1,4]上單調(diào)減函數(shù),

    則6ec8aac122bd4f6e在[1,4]上恒成立,所以不等式6ec8aac122bd4f6e在[1,4]上恒成立.

    即6ec8aac122bd4f6e在[1,4]上恒成立.            …………10分

    又6ec8aac122bd4f6e在[1,4]為減函數(shù),

    所以6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e                   …………12分

5.解:橢圓6ec8aac122bd4f6e的左、右焦點分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e ,         ……2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e  ,      6ec8aac122bd4f6e………3分

解得6ec8aac122bd4f6e,                   

6ec8aac122bd4f6e橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e .                       ………4分

   (Ⅱ)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e

設(shè)點6ec8aac122bd4f6e、6ec8aac122bd4f6e的坐標分別為6ec8aac122bd4f6e6ec8aac122bd4f6e,則6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e

   (1)當6ec8aac122bd4f6e時,點6ec8aac122bd4f6e、6ec8aac122bd4f6e關(guān)于原點對稱,則6ec8aac122bd4f6e

   (2)當6ec8aac122bd4f6e時,點6ec8aac122bd4f6e、6ec8aac122bd4f6e不關(guān)于原點對稱,則6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e       即6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e在橢圓上,6ec8aac122bd4f6e6ec8aac122bd4f6e,

化簡,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e.………………①         ……………7分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e.……………………………②    

將①、②兩式,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合(1)、(2)兩種情況,得實數(shù)6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e. ………………8分

(Ⅲ)6ec8aac122bd4f6e,點6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離6ec8aac122bd4f6e,

6ec8aac122bd4f6e的面積6ec8aac122bd4f6e6ec8aac122bd4f6e

                6ec8aac122bd4f6e.           ………………………… 10分

由①有6ec8aac122bd4f6e,代入上式并化簡,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e.                    ……………………… 11分

當且僅當6ec8aac122bd4f6e,即6ec8aac122bd4f6e時,等號成立.

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e的面積最大,最大值為6ec8aac122bd4f6e. ……………………… 12分

6.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………4分

(2)6ec8aac122bd4f6e的對稱軸垂直于x軸,且頂點為Pn,

∴設(shè)6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

=6ec8aac122bd4f6e…………………………8分

(3)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴S6ec8aac122bd4f6e中最大數(shù)a1=-17.…………………………10分

設(shè)6ec8aac122bd4f6e公差為d,則a10=6ec8aac122bd4f6e

由此得6ec8aac122bd4f6e

又∵6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………12分

本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn

2009屆新課標數(shù)學(xué)考點預(yù)測(26):函數(shù)與方程的思想方法

《2009年新課標考試大綱》明確指出“數(shù)學(xué)知識是指《普通高中數(shù)學(xué)課程標準(實驗)》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法”。其中數(shù)學(xué)思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結(jié)合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉(zhuǎn)化與化歸的思想方法、 必然與或然的思想方法。數(shù)學(xué)思想方法是對數(shù)學(xué)知識內(nèi)容和方法的本質(zhì)認識,是對數(shù)學(xué)的規(guī)律性的理性認識。高考通過對數(shù)學(xué)思想方法的考查,能夠最有效地檢測學(xué)生對數(shù)學(xué)知識的理解和掌握程度,能夠最有效地反映出學(xué)生對數(shù)學(xué)各部分內(nèi)容的銜接、綜合和滲透的能力!犊荚嚧缶V》對數(shù)學(xué)考查的要求是“數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)” 。而數(shù)學(xué)思想方法起著重要橋梁連接和支稱作用,“對數(shù)學(xué)思想方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學(xué)知識相結(jié)合,通過數(shù)學(xué)知識的考查,反映考生對數(shù)學(xué)思想方法的掌握程度” ! 數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想方法的考查,注重對數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求。” 數(shù)學(xué)的思想方法滲透到數(shù)學(xué)的各個角落,無處不在,有些題目還要考查多個數(shù)學(xué)思想。在高考復(fù)習(xí)時,要充分認識數(shù)學(xué)思想在提高解題能力的重要性,在復(fù)習(xí)中要有意識地滲透這些數(shù)學(xué)思想,提升數(shù)學(xué)思想。

一、函數(shù)與方程的思想

所謂函數(shù)的思想,就是用運動和變化的觀點、集合對應(yīng)的思想,去分析和研究數(shù)學(xué)問題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù)。運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決,函數(shù)思想是對函數(shù)概念的本質(zhì)認識,用于指導(dǎo)解題就是要善于利用函數(shù)知識或函數(shù)觀點去觀察分析處理問題。

所謂方程的思想就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程(組),或者運用方程的性質(zhì)去分析轉(zhuǎn)化問題使問題獲得解決,方程思想是對方程概念的本質(zhì)認識,用于指導(dǎo)解題就是利用方程或方程觀點觀察處理問題。函數(shù)思想與方程思想是密不可分的,可以相互轉(zhuǎn)化的。

函數(shù)和方程的思想是最重要和最常用的數(shù)學(xué)思想,它貫穿于整個高中教學(xué)中,中學(xué)數(shù)學(xué)中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結(jié)為函數(shù),尤其是導(dǎo)數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學(xué)教學(xué)中注重函數(shù)與方程的思想是相當重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點來考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運算,而在解答題中,則從更深的層次,在知識的網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相綜合的角度進行深入考查。

1、利用函數(shù)與方程的性質(zhì)解題

例1.(2008安徽卷,理,11)若函數(shù)6ec8aac122bd4f6e分別是6ec8aac122bd4f6e上的奇函數(shù)、偶函數(shù),且滿足6ec8aac122bd4f6e,則有(    )

A.6ec8aac122bd4f6e                 B.6ec8aac122bd4f6e

C.6ec8aac122bd4f6e


同步練習(xí)冊答案