又,聯(lián)立解得. 查看更多

 

題目列表(包括答案和解析)

在△ABC中,內(nèi)角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面積等于,求a、b;

(Ⅱ)若,求△ABC的面積.

【解析】第一問中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.

第二問中。由于即為即.

當(dāng)時(shí), , ,   所以當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組,解得,得到

解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

又因?yàn)椤鰽BC的面積等于,所以,得,………1分

聯(lián)立方程,解方程組得.                 ……………2分

(Ⅱ)由題意得

.             …………2分

當(dāng)時(shí), , ,           ……1分

所以        ………………1分

當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組

,解得,;   所以

 

查看答案和解析>>

已知向量),向量,,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

如圖,分別是橢圓+=1()的左、右焦點(diǎn),是橢圓的頂點(diǎn),是直線與橢圓的另一個交點(diǎn),=60°.

(Ⅰ)求橢圓的離心率;

(Ⅱ)已知△的面積為40,求的值.

【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。

(Ⅱ)因△的面積為40,設(shè),又面積公式,又直線,

又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,所以,解得。

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

設(shè)橢圓 )的一個頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線斜率存在時(shí),設(shè)存在直線,且,.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>


同步練習(xí)冊答案