19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分別為棱AB、BC的中點(diǎn), M為棱AA1­上的點(diǎn),二面角MDEA為30°.

   (1)求MA的長(zhǎng);w.w.w.k.s.5.u.c.o.m      

   (2)求點(diǎn)C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長(zhǎng)14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長(zhǎng);(2)矩形廠房利用舊墻的一面邊長(zhǎng)x≥14.問如何利用舊墻,即x為多少米時(shí),建墻費(fèi)用最省?(1)、(2)兩種方案哪個(gè)更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, x,y(0,+∞).

   (1)求證:,并指出等號(hào)成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時(shí)相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

說明:1.參考答案與評(píng)分標(biāo)準(zhǔn)指出了每道題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識(shí)點(diǎn)和能力比照評(píng)分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).

      2.對(duì)解答題中的計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

      3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題主要考查基本知識(shí)和基本運(yùn)算.共8小題,每小題5分,滿分40分.

 

題號(hào)

1

2

3

4

5

6

7

8

答案

A

B

C

D

A

C

B

D

 

二、填空題:本大題主要考查基本知識(shí)和基本運(yùn)算.本大題共7小題,每小題5分,滿分30分.其中13~15是選做題,考生只能選做兩題. 第12題第一個(gè)空2分,第二個(gè)空3分.

9.         10.    11.       12.-1;4     13.

14.1         15.   

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力

解: (1)∵, 且,

     ∴ .                                      

     由正弦定理得.                                       

     ∴.                                     

   (2)∵                                        

     ∴.

     ∴ .                                                       

    由余弦定理得,

.     

 

17.(本小題滿分14分)

本小題主要考查概率、隨機(jī)變量的分布列及其數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查運(yùn)算求解能力

解:(1)記“甲射擊一次,擊中目標(biāo)”為事件,“乙射擊一次,擊中目標(biāo)”為事件,“甲射擊一次,

未擊中目標(biāo)”為事件,“乙射擊一次,未擊中目標(biāo)”為事件

,.                        

依題意得,                                

        解得.

        故的值為.                                                    

(2)的取值分別為.                                            

,                      

,                     

的分布列為

0

2

4

 

                                                                    

                                    

 

18.(本小題滿分14分)

(本小題主要考查空間中線面的位置關(guān)系、空間的角、幾何體體積等基礎(chǔ)知識(shí),考查空間想象能力、推理論證能力和運(yùn)算求解能力)

 (1) 證明: ∵分別是棱的中點(diǎn),

         ∴是△的中位線.

         ∴.                              

         ∵平面平面

         ∴平面.                                             

         同理可證 平面.       

平面,平面,

∴平面// 平面.                                      

               

(2) 求三棱錐的體積的最大值, 給出如下兩種解法:

解法1: 由已知平面, ,

    ∴.

    ∴三棱錐的體積為

                                                   

                               

                              

                               .                                 

     當(dāng)且僅當(dāng)時(shí)等號(hào)成立,取得最大值,其值為, 此時(shí).          

 

     

解法2:設(shè),在Rt△中,.

     

      ∴三棱錐的體積為

                                

                                                         

                                

                                 .   

       ∵,          

     ∴ 當(dāng),即時(shí),取得最大值,其值為,此時(shí).

    求二面角的平面角的余弦值, 給出如下兩種解法:

 解法1:作,垂足為, 連接.

      ∵ 平面,平面平面,

      ∴ 平面.

      ∵ 平面,     

.

      ∵ ,     

平面.

平面,

      ∴.

     ∴ 是二面角的平面角.                              

     在Rt△中,,

     ∴.

在Rt△中,,

.

∴二面角的平面角的余弦值為.                     

解法2:分別以所在直線為軸, 軸, 軸,建立如圖的空間直角坐標(biāo)系,

     則.

     ∴.  

   設(shè)n為平面的法向量,

 

, 則.

為平面的一個(gè)法向量.                           

∵平面的一個(gè)法向量為,

.             

∴二面角的平面角的余弦值為.                        

19.(本小題滿分12分)

(本小題主要考查函數(shù)最值、不等式、導(dǎo)數(shù)及其應(yīng)用等基礎(chǔ)知識(shí),考查分類與整合的數(shù)學(xué)思想方法,以及運(yùn)算求解能力和應(yīng)用意識(shí))

解:(1)生產(chǎn)150件產(chǎn)品,需加工型零件450個(gè),

則完成型零件加工所需時(shí)間N,且.   

     (2)生產(chǎn)150件產(chǎn)品,需加工型零件150個(gè),

 則完成型零件加工所需時(shí)間N,且.

設(shè)完成全部生產(chǎn)任務(wù)所需時(shí)間為小時(shí),則的較大者.

,即,

解得.                                                       

所以,當(dāng)時(shí),;當(dāng)時(shí),.

.                             

當(dāng)時(shí),,故上單調(diào)遞減,

上的最小值為(小時(shí));                  

 當(dāng)時(shí),,故上單調(diào)遞增,

上的最小值為(小時(shí));            

上的最小值為.

.

答:為了在最短時(shí)間內(nèi)完成生產(chǎn)任務(wù),應(yīng)取.                        

 

20.(本小題滿分14分)

(本小題主要考查圓、橢圓、直線等基礎(chǔ)知識(shí)和數(shù)學(xué)探究,考查數(shù)形結(jié)合、分類與整合的數(shù)學(xué)思想方法,以及推理論證能力、運(yùn)算求解能力和創(chuàng)新意識(shí))

解:(1)圓, 圓心的坐標(biāo)為,半徑.

,

∴點(diǎn)在圓內(nèi).                                                   

設(shè)動(dòng)圓的半徑為,圓心為,依題意得,且,

.                                               

∴圓心的軌跡是中心在原點(diǎn),以兩點(diǎn)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,設(shè)其方程為

,  則.

.

∴所求動(dòng)圓的圓心的軌跡方程為.                          

 

 (2)由 消去化簡(jiǎn)整理得:.

設(shè),,則.

 

.  ①                              

消去化簡(jiǎn)整理得:.

設(shè),則,

 

.  ②                          

,

,即

 

.

.

解得.                                                                     

當(dāng)時(shí),由①、②得 

Z,

的值為 ,,;

當(dāng),由①、②得  ,

Z,

.

∴滿足條件的直線共有9條.                                            

21.(本小題滿分14分)

(本小題主要考查數(shù)列的通項(xiàng)公式、數(shù)列前項(xiàng)和、不等式等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化、分類與整合、特殊與一般的數(shù)學(xué)思想方法,以及推理論證能力、運(yùn)算求解能力和抽象概括能力)

解: (1) ∵是關(guān)于的方程N的兩根,

      ∴                                                  

     求數(shù)列的通項(xiàng)公式, 給出如下四種解法:                

解法1: 由,得,                  

     故數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.

, 即.                     

解法2: 由,兩邊同除以, 得,

     令, 則.

    

    

    

     .

也適合上式,

, 即.                     

解法3:  由,得,

       兩式相減得.

       當(dāng)為正奇數(shù)時(shí),

                        

                      

                       .

       且也適合上式.

       當(dāng)為正偶數(shù)時(shí),

                        

                        

                         .

       且也適合上式.

       ∴ 當(dāng)N時(shí),.                                   

解法4:由,,得,

.

     猜想.

下面用數(shù)學(xué)歸納法證明猜想正確.

①     當(dāng)時(shí),易知猜想成立;

② 假設(shè)當(dāng)N)時(shí),猜想成立,即,

   由,得,

  故當(dāng)時(shí),猜想也成立.

由①、②得,對(duì)任意N,.                

   


同步練習(xí)冊(cè)答案