題目列表(包括答案和解析)
拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)為(, 0), (, 0),則ax2+bx+c>0的解的情況是
A、<x< B、x>或x<
C、x≠± D、不確定,與a的符號(hào)有關(guān)
如果不等式<2和|x|>同時(shí)成立,那么x滿足
A.-<x< B.x>或x<-
C.x> D.x<-或x>
19C.解:由得,所以,所以,因?yàn)閒(x)=x,所以解得x=-1或-2或2,所以選C
調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生時(shí)間與性別的關(guān)系,得到以下數(shù)據(jù)。
晚上 | 白天 | 合計(jì) | |
男嬰 | 24 | 31 | 55 |
女嬰 | 8 | 26 | 34 |
合計(jì) | 32 | 57 | 89 |
試問有多大把握認(rèn)為嬰兒的性別與出生時(shí)間有關(guān)系?
某港口海水的深度(米)是時(shí)間(時(shí))()的函數(shù),記為:
已知某日海水深度的數(shù)據(jù)如下:
(時(shí)) |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
(米) |
10.0 |
13.0 |
9.9 |
7.0 |
10.0 |
13.0 |
10.1 |
7.0 |
10.0 |
經(jīng)長(zhǎng)期觀察,的曲線可近似地看成函數(shù)的圖象
(I)試根據(jù)以上數(shù)據(jù),求出函數(shù)的振幅、最小正周期和表達(dá)式;
(II)一般情況下,船舶航行時(shí),船底離海底的距離為米或米以上時(shí)認(rèn)為是安全的(船舶停靠時(shí),船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為米,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問,它至多能在港內(nèi)停留多長(zhǎng)時(shí)間(忽略進(jìn)出港所需時(shí)間)
【解析】第一問中利用三角函數(shù)的最小正周期為: T=12 振幅:A=3,b=10,
第二問中,該船安全進(jìn)出港,需滿足:即: ∴又 ,可解得結(jié)論為或得到。
在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項(xiàng)和Tn.
【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問中,,由第一問中知道,然后利用裂項(xiàng)求和得到Tn.
解: (Ⅰ) 設(shè):{an}的公差為d,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com