即N點坐標(biāo)為. 6分 查看更多

 

題目列表(包括答案和解析)

矩形ABCD的中心在坐標(biāo)原點,邊AB與x軸平行,AB=8,BC=6.E,F(xiàn),G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,R′,S′,T′是線段CF的四等分點.設(shè)直線ER與GR′,ES與GS′,ET與GT′的交點依次為L,M,N.
(1)求以HF為長軸,以EG為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點L,M,N都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設(shè)線段OF的n(n∈N+,n≥2)等分點從左向右依次為Ri(i=1,2,…,n-1),線段CF的n等分點從上向下依次為Ti(i=1,2,…,n-1),那么直線ERi(i=1,2,…,n-1)與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(即橫坐標(biāo)為奇數(shù)項,縱坐標(biāo)為偶數(shù)項),按如此規(guī)律下去,則a2009+a2010+a2011等于( 。
A.1003B.1005C.1006D.2011
精英家教網(wǎng)

查看答案和解析>>

如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(即橫坐標(biāo)為奇數(shù)項,縱坐標(biāo)為偶數(shù)項),按如此規(guī)律下去,則a2009+a2010+a2011等于( )

A.1003
B.1005
C.1006
D.2011

查看答案和解析>>

如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(即橫坐標(biāo)為奇數(shù)項,縱坐標(biāo)為偶數(shù)項),按如此規(guī)律下去,則a2009+a2010+a2011等于( )

A.1003
B.1005
C.1006
D.2011

查看答案和解析>>

如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(即橫坐標(biāo)為奇數(shù)項,縱坐標(biāo)為偶數(shù)項),按如此規(guī)律下去,則a2009+a2010+a2011等于( )

A.1003
B.1005
C.1006
D.2011

查看答案和解析>>


同步練習(xí)冊答案