題目列表(包括答案和解析)
(12分)
如圖,三棱錐P―ABC中, PC平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD平面PAB.
(Ⅰ) 求證:AB平面PCB;
(Ⅱ)求異面直線AP與BC所成角的大;
(Ⅲ)求二面角C-PA-B的大小的余弦值.
(12分)美國華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場造成產(chǎn)品銷售越來越難,為此某廠家舉行大型的促銷活動(dòng),經(jīng)測算該產(chǎn)品的銷售量P萬件與促銷費(fèi)用萬元滿足(為常數(shù)),如果不搞促銷活動(dòng),該產(chǎn)品的銷售只能是一萬件,已知生產(chǎn)該產(chǎn)品的固定投入是10萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入2萬元,產(chǎn)品的銷售價(jià)格定為該產(chǎn)品的平均成本(不含促銷費(fèi)用)的2倍,
(Ⅰ)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(Ⅱ)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大。(12分)已知直線,圓C:,;
(Ⅰ)證明直線與圓C總相交;
(Ⅱ)若圓C上存在兩點(diǎn)關(guān)于對稱,求的值;
(Ⅲ)當(dāng)被圓C截得的弦長最短時(shí),在上求一點(diǎn)P,使得最。∣為原點(diǎn))(12分)如圖,已知圓C:,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足=,?=0,點(diǎn)N的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若過定點(diǎn)A(1,0)的直線交曲線E于不同的兩點(diǎn)G、H,
且滿足∠GOH為銳角,求直線的斜率k的取值范圍.
(12分)關(guān)于的方程
(1)若方程C表示圓,求實(shí)數(shù)m的取值范圍;
(2)在方程C表示圓時(shí),若該圓與直線且,求實(shí)數(shù)m的值;
(3)在(2)的條件下,若定點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P是線段MN上的動(dòng)點(diǎn),求直線AP的斜率的取值范圍。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com