題目列表(包括答案和解析)
下午開始上課時間 | 1:30 | 1:40 | 1:50 | 2:00 | 2:10 |
平均每天午休人數(shù) | 250 | 350 | 500 | 650 | 750 |
下午開始上課時間 | 1:30 | 1:40 | 1:50 | 2:00 | 2:10 |
平均每天午休人數(shù) | 250 | 350 | 500 | 650 | 750 |
已知函數(shù)在處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分
⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得 …………12分
.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是或
已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運用。第一問中,因為函數(shù)的圖象經(jīng)過P(3,4)點,所以,解得,因為,所以.
(2)問中,對底數(shù)a進行分類討論,利用單調(diào)性求解得到。
(3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .
解:⑴∵函數(shù)的圖象經(jīng)過∴,即. … 2分
又,所以. ………… 4分
⑵當(dāng)時,;
當(dāng)時,. ……………… 6分
因為,,
當(dāng)時,在上為增函數(shù),∵,∴.
即.當(dāng)時,在上為減函數(shù),
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
已知冪函數(shù)滿足。
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)滿足,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數(shù)滿足,
因此,解得,………………3分
因為,所以k=0,或k=1,當(dāng)k=0時,,
當(dāng)k=1時,,綜上所述,k的值為0或1,!6分
(2)函數(shù),………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:,
當(dāng)時,,因為在區(qū)間上的最大值為5,
所以,或…………………………………………10分
解得滿足題意
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com