求與平面所成的角. 查看更多

 

題目列表(包括答案和解析)

AB與平面α所成的角為1,AC在平面α內(nèi),AC和AB在α內(nèi)的射影AB1所成的角為2,設(shè)∠BAC=

求證:cos=cos1cos2

查看答案和解析>>

平面直角坐標系x0y中,動點P到直線x=-2的距離比它到點F(1,0)的距離大1.
(1)求動點P的軌跡C;
(2)求曲線C與直線x=4所圍成的區(qū)域的面積.

查看答案和解析>>

平面角為銳角的二面角α-EF-β,A∈EF,AG?α,∠GAE=45°,若AG與β所成角為30°,求二面角α-EF-β的平面角.

查看答案和解析>>

平面直角坐標系x0y中,動點P到直線x=-2的距離比它到點F(1,0)的距離大1.

(1)求動點P的軌跡C;

(2)求曲線C與直線x=4所圍成的區(qū)域的面積.

查看答案和解析>>

設(shè)平面向量
a
=(m,1)
,
b
=(2,n)

(I)當m,n∈{-2,-1,1,2}時.記“
a
b
”為事件A,求事件A發(fā)生的概率;
(II)當m∈[-1,2],n∈[-1,1]時,記“
a
b
所成角為鈍角”為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

 

題號

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

D

A

B

B

C

D

 

 

二、填空題:本大題7小題,每小題4分,共28分.

11、;   12、 ;   13、;   14、;   15、;  16、 ;17、

 

三、解答題

18、(1)略      ……………………………………………………………………(7分)

(2)就是二面角的平面角,即,

 …………………………………………………………………(9分) 

 取中點,則平面,

就是與平面所成的角。   …………………………(11分)

,,

所以與平面所成的角的大小為。 …………………………(14分)

(用向量方法,相應(yīng)給分)

 

19、(1),  …………(7分)

    (2),當時,;當時,

,而,

        ……………………………………………(14分)

 

20、(1)當,當k=1時,

 ………………………………………  (7分) 

(2)由已知,又設(shè),則

,

知當時,為增函數(shù),則知為增函數(shù)!14分)

(用導數(shù)法相應(yīng)給分)

21、.解:(1)、設(shè),則,

 ∵點P分所成的比為   ∴    ∴  

     代入中,得 為P點的軌跡方程.

時,軌跡是圓. …………………………………………………(7分)

(2)、由題設(shè)知直線l的方程為, 設(shè)

聯(lián)立方程組  ,消去得: 

∵ 方程組有兩解  ∴   ∴    

   ∵

      ∴    

 又 ∵    ∴    解得(舍去)或

∴ 曲線C的方程是  ……………………………………………(14分)

22、解(1)   ………………………………………………(5分) 

猜想    ,    …………………………………………………………(7分)

證明(略)  ……………………………………………………………………(10分)

  (2),要使恒成立,

恒成立  

恒成立.

(i)當為奇數(shù)時,即恒成立, 又的最小值為1,  

(ii)當為偶數(shù)時,即恒成立,  又的最大值為,

         即,又,為整數(shù),

 ∴,使得對任意,都有 …………………………………( 16分)

 

 


同步練習冊答案