(1)若的導(dǎo)函數(shù)的圖像按向量平移后可得到函數(shù)的 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=logax2(a>0,a≠1),其導(dǎo)函數(shù)為f'(x),g(x)=ax-1,若f′(3)•g(-
1
2
)<0
,則y=f(x),y=g(x)在同一坐標(biāo)系中的圖象大致是( 。

查看答案和解析>>

設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=
1
x
,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與g(
1
x
)
的大小關(guān)系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對任意x>0成立?若存在,求出x0的取值范圍;若不存在請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax2+kbx(x>0)與函數(shù)g(x)=ax+blnx,a、b、k為常數(shù),它們的導(dǎo)函數(shù)分別為y=f′(x)與y=g′(x)
(1)若g(x)圖象上一點(diǎn)p(2,g(2))處的切線方程為:x-2y+2ln2-2=0,求a、b的值;
(2)對于任意的實(shí)數(shù)k,且a、b均不為0,證明:當(dāng)ab>0時,y=f′(x)與y=g′(x)的圖象有公共點(diǎn);
(3)在(1)的條件下,設(shè)A(x1,y1),B(x2,y2),(x1<x2)是函數(shù)y=g(x)的圖象上兩點(diǎn),g′(x0)=
y2-y1x2-x1
,證明:x1<x0<x2

查看答案和解析>>

設(shè)函數(shù)設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=
1
x
,g(x)=f(x)+f'(x).
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與g(
1
x
)
的大小關(guān)系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對任意x>0成立?若存在,求出x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

(14分)已知函數(shù),點(diǎn),點(diǎn),

(1)若,求函數(shù)的單調(diào)遞增區(qū)間;(2)若,函數(shù)處取得極值,且,求證:向量與向量不可能垂直;(3)若函數(shù)的導(dǎo)函數(shù)滿足:當(dāng)時,有恒成立,求函數(shù)的解析式。

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

 

題號

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

D

A

B

B

C

D

 

 

二、填空題:本大題7小題,每小題4分,共28分.

11、;   12、 ;   13、;   14、;   15、;  16、 ;17、。

 

三、解答題

18、(1)略      ……………………………………………………………………(7分)

(2)就是二面角的平面角,即

 …………………………………………………………………(9分) 

 取中點(diǎn),則平面,

就是與平面所成的角。   …………………………(11分)

,

所以與平面所成的角的大小為。 …………………………(14分)

(用向量方法,相應(yīng)給分)

 

19、(1),,  …………(7分)

    (2),當(dāng)時,;當(dāng)時,

,而,

        ……………………………………………(14分)

 

20、(1)當(dāng),當(dāng)k=1時,

 ………………………………………  (7分) 

(2)由已知,又設(shè),則

,

知當(dāng)時,為增函數(shù),則知為增函數(shù)。…………………(14分)

(用導(dǎo)數(shù)法相應(yīng)給分)

21、.解:(1)、設(shè),則,

 ∵點(diǎn)P分所成的比為   ∴    ∴  

     代入中,得 為P點(diǎn)的軌跡方程.

當(dāng)時,軌跡是圓. …………………………………………………(7分)

(2)、由題設(shè)知直線l的方程為, 設(shè)

聯(lián)立方程組  ,消去得: 

∵ 方程組有兩解  ∴   ∴    

   ∵

      ∴    

 又 ∵    ∴    解得(舍去)或

∴ 曲線C的方程是  ……………………………………………(14分)

22、解(1)   ………………………………………………(5分) 

猜想    ,    …………………………………………………………(7分)

證明(略)  ……………………………………………………………………(10分)

  (2),要使恒成立,

恒成立  

恒成立.

(i)當(dāng)為奇數(shù)時,即恒成立, 又的最小值為1,  

(ii)當(dāng)為偶數(shù)時,即恒成立,  又的最大值為

         即,又為整數(shù),

 ∴,使得對任意,都有 …………………………………( 16分)

 

 


同步練習(xí)冊答案