18. 甲袋中裝有1個(gè)紅球.2個(gè)白球個(gè)3個(gè)黑球.乙袋中裝有2個(gè)紅球.2個(gè)白球和一個(gè)黑球.現(xiàn)從兩袋中各取1個(gè)球. (I)求恰有1個(gè)白球和一個(gè)黑球的概率, (Ⅱ)求兩球顏色相同的概率, (Ⅲ)求至少有1個(gè)紅球的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個(gè)球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會是等可能的.求:

(1)則袋中原有白球的個(gè)數(shù);

(2)取球2次終止的概率;

(3)甲取到白球的概率

 

查看答案和解析>>

(本小題滿分12分)袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個(gè)球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會是等可能的.求:
(1)則袋中原有白球的個(gè)數(shù);
(2)取球2次終止的概率;
(3)甲取到白球的概率

查看答案和解析>>

(本小題滿分12分)袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個(gè)球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會是等可能的.求:
(1)則袋中原有白球的個(gè)數(shù);
(2)取球2次終止的概率;
(3)甲取到白球的概率

查看答案和解析>>

(本小題滿分12分)
現(xiàn)有甲、乙兩個(gè)口袋,甲袋裝有2個(gè)紅球和2個(gè)白球,乙袋裝有2個(gè)紅球和n個(gè)白球,某人從甲、乙兩個(gè)口袋中等可能性地各取2個(gè)球.
(1)若,求取到的4個(gè)球全是紅球的概率;
(2)若取到的4個(gè)球中至少有2個(gè)紅球的概率為,求n的值.

查看答案和解析>>

(本小題滿分12分)袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時(shí)既終止,每個(gè)球在每一次被取出的機(jī)會是等可能的,用表示取球終止所需要的取球次數(shù).

(Ⅰ)求袋中原有的白球的個(gè)數(shù);

(Ⅱ)求甲取到白球的概率.

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

A

C

C

C

A

A

B

二、填空題:(每小題4分,共24分)

11.     12.4       13.      14.     15.4   16.

三、解答題:(共76分,以下各題為累計(jì)得分,其他解答請相應(yīng)給分)

17.解:(I)

          

        由,得

        又當(dāng)時(shí),得

       

       (Ⅱ)當(dāng)

        即時(shí)函數(shù)遞增。

        故的單調(diào)增區(qū)間為,

18.解:(I)各取1個(gè)球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)

(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2

(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1

(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)

等30種情況

其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,

故1白1黑的概率為

   (Ⅱ)2紅有2種,2白有4種,2黑有3種,

故兩球顏色相同的概率為

   (Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,

故至少有1個(gè)紅球的概率為

19.解:(I)側(cè)視圖   (高4,底2

       

   (Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,

面PAB

又AC面PAC,面PAC面PAB

   (Ⅲ)面ABC,為直線PC與底面ABC所成的角

中,PA=4,AC=,

20.解:(I)由題意設(shè)C的方程為,得

   

    設(shè)直線的方程為,由

    ②代入①化簡整理得  

    因直線與拋物線C相交于不同的兩點(diǎn),

    故

    即,解得時(shí)僅交一點(diǎn),

   (Ⅱ)設(shè),由由(I)知

   

   

   

21.解:(I)   由

于是

切線方程為,即

   (Ⅱ)令,解得

    ①當(dāng)時(shí),即時(shí),在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而

    ②當(dāng),即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而

    ③當(dāng)時(shí),內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為的較大者。

    由,得,故當(dāng)時(shí),

    當(dāng)時(shí),

22.解:(I)設(shè)的首項(xiàng)為,公差為d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        當(dāng)時(shí),,當(dāng)時(shí),

       

        于是

        設(shè)存在正整數(shù),使對恒成立

        當(dāng)時(shí),,即

        當(dāng)時(shí),

       

        當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),

        存在正整數(shù)或8,對于任意正整數(shù)都有成立。

www.ks5u.com

 

 


同步練習(xí)冊答案