所以 2分 解得:a=2. 4分 b=-2In2 6分 查看更多

 

題目列表(包括答案和解析)

已知定義域?yàn)镽的函數(shù)f(x)滿足:f(4)=-3,且對任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為


  1. A.
    (-∞,4)
  2. B.
    (-∞,-4)
  3. C.
    (-∞,-4)∪(4,+∞)
  4. D.
    (4,+∞)

查看答案和解析>>

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,當(dāng)
b
=(
3
25
,
4
25
)
時(shí)取等號,
所以x2+y2的最小值為
1
25

(2)已知實(shí)數(shù)x,y,z滿足2x+3y+z=1,則x2+y2+z2的最小值為
1
14
1
14

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

已知向量,且,A為銳角,求:

(1)角A的大。

(2)求函數(shù)的單調(diào)遞增區(qū)間和值域.

【解析】第一問中利用,解得   又A為銳角                 

      

第二問中,

 解得單調(diào)遞增區(qū)間為

解:(1)        ……………………3分

   又A為銳角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得單調(diào)遞增區(qū)間為

                                                  ……………………10分

 

 

查看答案和解析>>

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,當(dāng)
b
=(
3
25
4
25
)
時(shí)取等號,
所以x2+y2的最小值為
1
25

(2)已知實(shí)數(shù)x,y,z滿足2x+3y+z=1,則x2+y2+z2的最小值為______.

查看答案和解析>>


同步練習(xí)冊答案