解:(1)設(shè)設(shè).由條件知 查看更多

 

題目列表(包括答案和解析)

設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB⇒a=2bcosB
⇒a=2b•
a2+c2-b2
2ac
.變形得a2c=a2b+bc2-b3⇒a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )條件.

查看答案和解析>>

設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•
a2+c2-b2
2ac
.變形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的( 。l件.
A.充分非必要B.必要非充分
C.充要D.非充分非必要

查看答案和解析>>

設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•數(shù)學(xué)公式.變形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的條件.


  1. A.
    充分非必要
  2. B.
    必要非充分
  3. C.
    充要
  4. D.
    非充分非必要

查看答案和解析>>

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r(shí),游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
12

(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r(shí),游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為數(shù)學(xué)公式
(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>


同步練習(xí)冊(cè)答案