題目列表(包括答案和解析)
已知函數(shù);
(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍。
(2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實數(shù)的取值范圍。
【解析】第一問中,利用導(dǎo)數(shù),因為在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。
解:(1),
因為在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以 內(nèi)滿足恒成立,即恒成立,
亦即,
即可 又
當(dāng)且僅當(dāng),即x=1時取等號,
在其定義域內(nèi)為單調(diào)增函數(shù)的實數(shù)k的取值范圍是.
(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設(shè)
上的增函數(shù),依題意需
實數(shù)k的取值范圍是
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
已知數(shù)列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設(shè),,
則.又,也即,所以,也即,又因為,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;
②假設(shè)時,命題成立,即,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間上的最小值;
(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,得:
,
第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),得:
,
(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時,
當(dāng)命題p為假,命題q為真時,,
所以
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當(dāng)x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即
令,得
①當(dāng)時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時,,對于,,故在上單調(diào)遞增.因此當(dāng)取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.
當(dāng)時,
在(2)中取,得 ,
從而
所以有
綜上,,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com