[理科.文科]已知兩定點(diǎn).動(dòng)點(diǎn)M滿足.(Ⅰ)求動(dòng)點(diǎn)M的軌跡Q的方程, 查看更多

 

題目列表(包括答案和解析)

(文科)已知△ABC中,∠B=60°,且AB=1,BC=4,則邊BC上的中線AD的長為多少?
(理科)在△ABC中,BC=a,AC=b,a、b是方程x2-2
3
x+2=0
的兩個(gè)根,且2cos(A+B)=1,求:
(1)∠C的度數(shù);
(2)AB的長度.

查看答案和解析>>

(文科做(1)(2)(4),理科全做)
已知過拋物線C1:y2=2px(p>0)焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn) 
(1)證明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)點(diǎn)Q為線段AB的中點(diǎn),求點(diǎn)Q的軌跡方程;
(3)若x1=1,x2=4,以坐標(biāo)軸為對稱軸的橢圓或雙曲線C2過A、B兩點(diǎn),求曲線C1和C2的方程;
(4)在(3)的條件下,若曲線C2的兩焦點(diǎn)分別為F1、F2,線段AB上有兩點(diǎn)C(x3,y3),D(x4,y4)(x3<x4),滿足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在線段F1 F2上是否存在一點(diǎn)P,使PD=
11
,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=|x-1|+|x-2|.
(1)求函數(shù)f(x)的最小值;
(2)(文科)已知k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|f(x)對于任意t∈R恒成立,求實(shí)數(shù)x的取值集合;
(3)(理科)設(shè)不等式f(x)≤2的解集為集合A,若存在x∈A,使得x2+(1-a)x=-9求實(shí)數(shù)a的最小值.

查看答案和解析>>

(理科)已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對任意的t∈[1,2],若函數(shù)g(x)=x3+x2[f/(x)+
m
2
]
在區(qū)間(t,3)上有最值,求實(shí)數(shù)m取值范圍;
(3)求證:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函數(shù)f(x)=ax3+
1
2
x2-2x+c

(1)若x=-1是f(x)的極值點(diǎn)且f(x)的圖象過原點(diǎn),求f(x)的極值;
(2)若g(x)=
1
2
bx2-x+d
,在(1)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g(x)的圖象與函數(shù)f(x)的圖象恒有含x=-1的三個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)b的取值范圍;否則說明理由.

查看答案和解析>>

(本題滿分16分)

   (文科學(xué)生做)已知命題p:函數(shù)在R上存在極值;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;

為真,為假,試求實(shí)數(shù)a的取值范圍。

 

(理科學(xué)生做)已知命題p:對,函數(shù)有意義;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;

為真,為假,試求實(shí)數(shù)a的取值范圍。

查看答案和解析>>


同步練習(xí)冊答案