題目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
3 |
OP |
OQ |
PR |
RQ |
MF |
FN |
x2 |
a2 |
y2 |
b2 |
3 |
OP |
OQ |
PR |
RQ |
MF |
FN |
已知點
P1(x0,y0)為雙曲線為正常數(shù))上任一點F2為雙曲線的右焦點,過P1作右準(zhǔn)線的垂線,垂足為A,連接F2A并延長交y軸于點P2.(1)求線段P1P2的中點P的軌跡F的方程;
(2)設(shè)軌跡E與x軸交于B,D兩點,在E上任取一點Q(x1,y1)(y≠0),直線QB,QD分別交于y軸于M,N兩點.求證:以MN為直徑的圓過兩定點.
(Ⅰ)求動點M的軌跡Q的方程;
(Ⅱ)設(shè)曲線Q與y軸的交點為B,點E、F是曲線Q上兩個不同的動點,且·=0,直線AE與BF交于點P(x0,y0),求證:為定值.
(Ⅰ)求動點M的軌跡Q的方程;
(Ⅱ)設(shè)曲線Q與y軸的交點為B,點B、F是曲線Q上兩個不同的動點,且=0,直線AE與BF交于點P(x0,y0),求證:為定值;
(Ⅲ)在第(Ⅱ)問的條件下,求證:過點p′(0,y0)和點E的直線是曲線Q的一條切線.
(Ⅳ)在第(Ⅱ)問的條件下,試問是否存在點E使得(或),若存在,求出此時點E的坐標(biāo);若不存在,說明理由.