則由.即. 查看更多

 

題目列表(包括答案和解析)

 

。,輪船位于港口O北偏西且與該港口相距20海里的A處,并以30海里/小時(shí)的航行速度沿正東方向勻速行駛。假設(shè)該小船沿直線方向以海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇。

(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?

(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向與航行速度的大。,使得小艇能以最短時(shí)間與輪船相遇,并說(shuō)明理由。

 

 

查看答案和解析>>

求由拋物線與直線所圍成圖形的面積.

【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點(diǎn)坐標(biāo),然后利用定積分表示出面積為,所以得到,由此得到結(jié)論為

解:設(shè)所求圖形面積為,則

=.即所求圖形面積為

 

查看答案和解析>>

如圖,第n(n∈N*)個(gè)圖形是由正n+2邊形“擴(kuò)展”而來(lái),則第n個(gè)圖形中共有
(n+2)(n+3)
(n+2)(n+3)
個(gè)頂點(diǎn)(相臨兩條邊的交點(diǎn)即為頂點(diǎn)).

查看答案和解析>>

設(shè)是由個(gè)實(shí)數(shù)組成的列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.

(1)數(shù)表如表1所示,若經(jīng)過(guò)兩“操”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫(xiě)出每次“操作”后所得的數(shù)表(寫(xiě)出一種方法即可);表1

1

2

3

1

0

1

(2)數(shù)表如表2所示,若必須經(jīng)過(guò)兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)的所有可能值;表2

(3)對(duì)由個(gè)實(shí)數(shù)組成的列的任意一個(gè)數(shù)表,能否經(jīng)過(guò)有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù)?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

設(shè)是由個(gè)實(shí)數(shù)組成的列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.

(Ⅰ) 數(shù)表如表1所示,若經(jīng)過(guò)兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫(xiě)出每次“操作”后所得的數(shù)表(寫(xiě)出一種方法即可);

表1

1

2

3

1

0

1

(Ⅱ) 數(shù)表如表2所示,若必須經(jīng)過(guò)兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)的所有可能值;

表2

(Ⅲ)對(duì)由個(gè)實(shí)數(shù)組成的列的任意一個(gè)數(shù)表,能否經(jīng)過(guò)有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù)?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案