題目列表(包括答案和解析)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對(duì)任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即
令,得
①當(dāng)時(shí),,在上恒成立。因此在上單調(diào)遞減.從而對(duì)于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時(shí),,對(duì)于,,故在上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得 ,
從而
所以有
綜上,,
已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.
【解析】第一問當(dāng)時(shí),,則。
依題意得:,即 解得
第二問當(dāng)時(shí),,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),,令得
當(dāng)變化時(shí),的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,。∴在上的最大值為2.
②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;
當(dāng)時(shí), 在上單調(diào)遞增!在最大值為。
綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;
當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則代入(*)式得:
即,而此方程無(wú)解,因此。此時(shí),
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.
【解析】第一問中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。
第二問中,∵,,
∴原不等式等價(jià)于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)時(shí),,.
當(dāng)在上變化時(shí),,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時(shí),,.
(Ⅱ)∵,,
∴原不等式等價(jià)于:,
即, 亦即.
∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,
∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).
∴只需,即,解之得或.
因此,的取值范圍是
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),恒成立;
(3)任取兩個(gè)不相等的正數(shù),且,若存在使成立,證明:.
【解析】(1)g(x)=lnx+,= (1’)
當(dāng)k0時(shí),>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無(wú)減區(qū)間;
當(dāng)k>0時(shí),>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),的變化情況如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時(shí),=0所以G(x) 為減函數(shù), 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時(shí), 2x-ef(x)恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1 ∴l(xiāng)nx0 –lnx=-1–lnx===(10’) 設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵∴=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
性別人數(shù)綜合指標(biāo) | 男 | 女 |
正常 | 178 | 278 |
良好 | 23 | 21 |
A、2人 | B、22人 |
C、60人 | D、667人 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com