(1)若.求證:平面平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)M(1,-3)N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R)

(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)C的軌跡與拋物線y2=4x交于A、B兩點(diǎn),求證:
OA
OB

(Ⅲ)求以AB為直徑的圓的方程.

查看答案和解析>>

平面直角坐標(biāo)系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個(gè)點(diǎn)
(n∈N*,k、b均為非零常數(shù)).
(1)若數(shù)列{xn}成等差數(shù)列,求證:數(shù)列{yn}也成等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若點(diǎn)P滿足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我們稱
OP
是向量
OA1
OA2
,…,
OAn
的線性組合,{an}是該線性組合的系數(shù)數(shù)列.當(dāng)
OP
是向量
OA1
,
OA2
,…,
OAn
的線性組合時(shí),請(qǐng)參考以下線索:
①系數(shù)數(shù)列{an}需滿足怎樣的條件,點(diǎn)P會(huì)落在直線l上?
②若點(diǎn)P落在直線l上,系數(shù)數(shù)列{an}會(huì)滿足怎樣的結(jié)論?
③能否根據(jù)你給出的系數(shù)數(shù)列{an}滿足的條件,確定在直線l上的點(diǎn)P的個(gè)數(shù)或坐標(biāo)?
試提出一個(gè)相關(guān)命題(或猜想)并開展研究,寫出你的研究過程.[本小題將根據(jù)你提出的命題(或猜想)的完備程度和研究過程中體現(xiàn)的思維層次,給予不同的評(píng)分].

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

平面向量
a
=(
3
,-1)
,
b
=(
1
2
,
3
2
)
,若存在不同時(shí)為o的實(shí)數(shù)k和x,使
m
=
a
+(x2-3)
b
,
n
=-k
a
+x
b
,
m
n

(Ⅰ)試求函數(shù)關(guān)系式k=f(x).
(Ⅱ)對(duì)(Ⅰ)中的f(x),設(shè)h(x)=4f(x)-ax2在[1,+∞)上是單調(diào)函數(shù).
①求實(shí)數(shù)a的取值范圍;
②當(dāng)a=-1時(shí),如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求證:h(x0)=x0

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點(diǎn)M、N,且以MN為直徑的圓過原點(diǎn),求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長軸長的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

B

A

C

A

C

D

D

B

C

二、填空題:本大題共4小題,每小題4分,共16分.

13.   14.   15.   16.(-1,0)

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.解:(1)

                                                ………………3分

       又題意可得            ………………4分

       當(dāng)=1時(shí),有最大值為2,

                                      ………………6分

   (2)  ……7分

                                        …………………8分

                                   …………………9分

       由余弦定理得:a2=16+25-2×4×5cos=21           …………12分

18.解:(1) 抽取的全部結(jié)果所構(gòu)成的基本事件空間為:

Ω={(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3)}

共10個(gè)基本事件                                              ………………2分

設(shè)使函數(shù)為增函數(shù)的事件空間為A:

則A={(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3)}有6個(gè)基本事件   ………………4分

所以,                                          …………………6分

   (2) m、n滿足條件m+n-1≤0    -1≤m≤1  -1≤n≤1的區(qū)域如圖所示:

使函數(shù)圖像過一、二、三象限的(m,n)為區(qū)域?yàn)榈谝幌笙薜年幱安糠?/p>

∴所求事件的概率為       ………………12分                         

19.解:(1).連,四邊形菱形  

,

www.ks5u.com                       ……………2分

  的中點(diǎn),

  ,……………4分

     ………6分

(2).當(dāng)時(shí),使得   …………7分

,交,則 的中點(diǎn),

上中線,為正三角形的中心,令菱形的邊長為,則。

     

             ……………………10分

   即:   。      ………………12分

20.解:(1)  是等差數(shù)列,  …………………1分

      

       從第二項(xiàng)開始是等比數(shù)列,  ………………6分

   (2)                           ………………7分

      

              ………………10分

       錯(cuò)位相減并整理得                  ………………12分

21.解:(1)∵點(diǎn)A在圓,

          …………3分

       由橢圓的定義知:|AF1|+|AF2|=2a,

                 ……………5分

   (2)∵函數(shù)

       點(diǎn)F1(-1,0),F2(1,0),                             ………………6分

       ①若

            ……………7分

       ②若ABx軸不垂直,設(shè)直線AB的斜率為k,則AB的方程為y=kx+1)

       由…(*)

       方程(*)有兩個(gè)不同的實(shí)根.

       設(shè)點(diǎn)Ax1,y1),Bx2,y2),則x1,x2是方程(*)的兩個(gè)根

                            ………………9分

      

      

        ……10分

      

       由①②知                        ………………12分

22.解:(1)設(shè)在公共點(diǎn)處的切線相同

                               …………………2分

由題意知     ,∴ ……4分

得,,或(舍去)                                       

即有                           …………………6分

(2)設(shè)在公共點(diǎn)處的切線相同

由題意知       ,∴

得,,或(舍去)      ………………9分

即有               ……………10分

,則,于是

當(dāng),即時(shí),;

當(dāng),即時(shí),                 …………………13分

的最大值為,故的最大值為 ………………14分

 


同步練習(xí)冊(cè)答案