20.已知數(shù)列的首項.前n項和. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)已知數(shù)列的首項,….

(1)證明:數(shù)列是等比數(shù)列;

(2)數(shù)列的前項和

 

查看答案和解析>>

(本題滿分14分)已知數(shù)列的首項,通項為常數(shù)),且成等差數(shù)列.

(1)求的值;

(2)數(shù)列的前項的和.

 

查看答案和解析>>

(本題滿分14分)已知數(shù)列是首項為1公差為正的等差數(shù)列,數(shù)列是首項為1的等比數(shù)列,設(shè),且數(shù)列的前三項依次為1,4,12,

(1)求數(shù)列、的通項公式;

(2)若等差數(shù)列的前n項和為Sn,求數(shù)列的前項的和Tn

查看答案和解析>>

(本題滿分14分)已知數(shù)列是首項為1公差為正的等差數(shù)列,數(shù)列是首項為1的等比數(shù)列,設(shè),且數(shù)列的前三項依次為1,4,12,

(1)求數(shù)列、的通項公式;

(2)若等差數(shù)列的前n項和為Sn,求數(shù)列的前項的和Tn

查看答案和解析>>

(本題滿分14分)已知數(shù)列是首項為1公差為正的等差數(shù)列,數(shù)列是首項為1的等比數(shù)列,設(shè),且數(shù)列的前三項依次為1,4,12,

(1)求數(shù)列、的通項公式;

(2)若等差數(shù)列的前n項和為Sn,求數(shù)列的前項的和Tn

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

,   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

      • 市一次模文數(shù)參答―1(共2頁)

                                                                                                5分

        (2),時取得極值.由.                                                                                          8分

        ,,∴當時,

        上遞減.                                                                                       12分

        ∴函數(shù)的零點有且僅有1個     15分

         

        22.解:(1) 設(shè),由已知

        ,                                        2分

        設(shè)直線PB與圓M切于點A,

                                                         6分

        (2) 點 B(0,t),點,                                                                  7分

        進一步可得兩條切線方程為:

        ,                                   9分

        ,

        ,,                                          13分

        ,又時,,

        面積的最小值為                                                                            15分

         

         


        同步練習冊答案