(B) 過(guò)直線(xiàn)有且只有一個(gè)平面與平面垂直 查看更多

 

題目列表(包括答案和解析)

直線(xiàn)a,b為異面直線(xiàn),過(guò)直線(xiàn)a與直線(xiàn)b平行的平面(  )

查看答案和解析>>

直線(xiàn)a,b為異面直線(xiàn),過(guò)直線(xiàn)a與直線(xiàn)b平行的平面


  1. A.
    有且只有一個(gè)
  2. B.
    有無(wú)數(shù)多個(gè)
  3. C.
    有且只有一個(gè)或不存在
  4. D.
    不存在

查看答案和解析>>

9、設(shè)直線(xiàn)m與平面α相交但不垂直,則下列說(shuō)法中正確的是( 。

查看答案和解析>>

8、若直線(xiàn)a與b異面,則過(guò)a且與b垂直的平面( 。

查看答案和解析>>

在平面直角坐標(biāo)系中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)P滿(mǎn)足PA⊥PB,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若過(guò)點(diǎn)Q(1,2)的直線(xiàn)l與點(diǎn)P的軌跡有且只有一個(gè)交點(diǎn),求直線(xiàn)l的方程.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數(shù)學(xué)期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標(biāo)系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,,                  (6分)

易求為平面PAC的一個(gè)法向量.

為平面PDC的一個(gè)法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設(shè),則

   ,

解得點(diǎn),即   (13分)

(不合題意舍去)或

所以當(dāng)的中點(diǎn)時(shí),直線(xiàn)與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設(shè)直線(xiàn)的方程為:

,所以的方程為                     (4分)

點(diǎn)的坐標(biāo)為.

可求得拋物線(xiàn)的標(biāo)準(zhǔn)方程為.                                       (6分)

(Ⅱ)設(shè)直線(xiàn)的方程為,代入拋物線(xiàn)方程并整理得    (8分)     

設(shè)

設(shè),則

                                      (11分)

當(dāng)時(shí)上式是一個(gè)與無(wú)關(guān)的常數(shù).

所以存在定點(diǎn),相應(yīng)的常數(shù)是.                                     (14分)

 

22.解:(Ⅰ)當(dāng)時(shí)               (2分)

上遞增,在上遞減

所以在0和2處分別達(dá)到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當(dāng)時(shí),

<tbody id="tlwpi"><dfn id="tlwpi"><i id="tlwpi"></i></dfn></tbody>

    <label id="tlwpi"></label>

    市一次模理數(shù)參答―3(共4頁(yè))

                                            (7分)

    上遞減,在上遞增.

    從而上遞增

    因此                           (10分)

    (Ⅲ)假設(shè),即=

    ,

                                         (12分)

    (x)=0的兩根可得,

    從而有

    ≥2,這與<2矛盾.                                

    故直線(xiàn)與直線(xiàn)不可能垂直.                                               (15分)

     

     

     


    同步練習(xí)冊(cè)答案
    <center id="tlwpi"><label id="tlwpi"></label></center>
    <ol id="tlwpi"></ol>