(Ⅲ))設(shè)數(shù)列的各項均為正整數(shù).且.試證. 命題:周志國 馮建國審校:馮建國 劉興東 劉其鹿 淮安市2006-2007學(xué)年度高三年級第四次調(diào)查測試 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列的各項均為正實數(shù),,若數(shù)列滿足,,其中為正常數(shù),且.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使得當(dāng)時,恒成立?若存在,求出使結(jié)論成立的的取值范圍和相應(yīng)的的最小值;若不存在,請說明理由;
(3)若,設(shè)數(shù)列對任意的,都有成立,問數(shù)列是不是等比數(shù)列?若是,請求出其通項公式;若不是,請說明理由.

查看答案和解析>>

設(shè)數(shù)列的各項均為正實數(shù),,若數(shù)列滿足,其中為正常數(shù),且.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使得當(dāng)時,恒成立?若存在,求出使結(jié)論成立的的取值范圍和相應(yīng)的的最小值;若不存在,請說明理由;
(3)若,設(shè)數(shù)列對任意的,都有成立,問數(shù)列是不是等比數(shù)列?若是,請求出其通項公式;若不是,請說明理由.

查看答案和解析>>

設(shè)數(shù)列的各項均為正數(shù),若對任意的正整數(shù),都有成等差數(shù)列,且成等比數(shù)列.

(Ⅰ)求證數(shù)列是等差數(shù)列;

(Ⅱ)如果,求數(shù)列的前項和。

查看答案和解析>>

設(shè)數(shù)列的各項均為正數(shù),前項和為,對于任意的,成等差數(shù)列,設(shè)數(shù)列的前項和為,且,則對任意的實數(shù)是自然對數(shù)的底)和任意正整數(shù),小于的最小正整數(shù)為(   )

A.               B.               C.               D.

 

查看答案和解析>>

設(shè)數(shù)列的各項均為正數(shù),前項和為,對于任意的,成等差數(shù)列,設(shè)數(shù)列的前項和為,且,則對任意的實數(shù)是自然對數(shù)的底)和任意正整數(shù),小于的最小正整數(shù)為(   )

A. B. C. D.

查看答案和解析>>

說明:

    一、本解答給出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細(xì)則。

二、對計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過該部分正確解答所給分?jǐn)?shù)的一半;如果后續(xù)部分的解答存在較嚴(yán)重的錯誤,則不再給分。

三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

四、每題只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分。

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

C

C

D

A

A

B

C

B

D

二、填空題:

11.40.6,1.1  12. 13. 14.30  15.  16.(1,1),(2,2),(3,4),(4,8)

三、解答題:

  17.(Ⅰ),                         ①            …………………2分

    又, ∴                 ②             ……………… 4分

    由①、②得              …………………………………………………………… 6分

   (Ⅱ)  ……………………………………… 8分

                 …………………………………………………………………… 10分

     …………………………………………………………………………12分

18.(Ⅰ)設(shè)點,則

,

,又,

,∴橢圓的方程為:    …………………………………………7分

(Ⅱ)當(dāng)過直線的斜率不存在時,點,則;

     當(dāng)過直線的斜率存在時,設(shè)斜率為,則直線的方程為,

設(shè),由    得:

       …………………………………………10分

 

                                           ……13分

綜合以上情形,得:    ……………………………………………………14分

    ∴GH∥AD∥EF,∴E,F(xiàn),G,H四點共面. ……………………1分

    又H為AB中點,∴EH∥PB. 又EH面EFG,PB平面EFG,

    ∴PB∥平面EFG.                 ………………………………4分

       (Ⅱ)取BC的中點M,連結(jié)GM、AM、EM,則GM//BD,

    ∴∠EGM(或其補角)就是異面直線EG與BD所成的角.……6分

         在Rt△MAE中, ,

         同理,又GM=,………………7分

    ∴在△MGE中,     ………………8分

    故異面直線EG與BD所成的角為arccos,                   ………………………………9分

    又AB∩PA=A,∴AD⊥平面PAB. ……………………………………10分

    又∵E,F(xiàn)分別是PA,PD中點,∴EF∥AD,∴EF⊥平面PAB.   

    又EF面EFQ,∴面EFQ⊥面PAB. ………………………………11分

    過A作AT⊥ER于T,則AT⊥平面EFQ,

    ∴AT就是點A到平面EFQ的距離. ………………………………12分

    設(shè),則

        在,            …………………………13分

         解得 故存在點Q,當(dāng)CQ=時,點A到平面EFQ的距離為0.8. ……………………… 14分

    解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

    <label id="7qze2"><progress id="7qze2"></progress></label>

    <noscript id="7qze2"></noscript>
  1.    (Ⅰ) …………1分

        設(shè),  即,

       

                  ……………3分

        ,∴PB∥平面EFG. ………………………………………………………… 4分

       (Ⅱ)∵,              …………………………………………5分

        ,            ……………………… 8分

    故異面直線EG與BD所成的角為arcos.            …………………………………… 9分

       (Ⅲ)假設(shè)線段CD上存在一點Q滿足題設(shè)條件,令

        ∴點Q的坐標(biāo)為(2-m,2,0), ……………………………………10分

        而, 設(shè)平面EFQ的法向量為,則

         

        令,             ……………………………………………………12分

        又, ∴點A到平面EFQ的距離,……13分

        即不合題意,舍去.

        故存在點Q,當(dāng)CQ=時,點A到平面EFQ的距離為0.8.           ……………………14分

    20. (Ⅰ),          ………………2分

    當(dāng)時,,        …………4分

       (Ⅱ)是單調(diào)增函數(shù);   ………………6分

    是單調(diào)減函數(shù);      ………………8分

       (Ⅲ)是偶函數(shù),對任意都有成立

    *  對任意都有成立

    1°由(Ⅱ)知當(dāng)時,是定義域上的單調(diào)函數(shù),

    對任意都有成立

    時,對任意都有成立                   …………10分

    2°當(dāng)時,,由

    上是單調(diào)增函數(shù)在上是單調(diào)減函數(shù),∴對任意都有

    時,對任意都有成立               ………………12分

    綜上可知,當(dāng)時,對任意都有成立           .……14分

    21、(Ⅰ)設(shè)等差數(shù)列{}的公差是,則,解得

    所以                ……………………………………2分

    =-1<0

    適合條件①;又,所以當(dāng)=4或5時,取得最大值20,即≤20,適合條件②。綜上所述, …………………………………………4分

    (Ⅱ)因為,所以當(dāng)n≥3時,,此時數(shù)列單調(diào)遞減;當(dāng)=1,2時,,即

    因此數(shù)列中的最大項是,所以≥7………………………………………………………8分

    (Ⅲ)假設(shè)存在正整數(shù),使得成立,

    由數(shù)列的各項均為正整數(shù),可得                ……………10分

    因為                 ……11分

    由              …13分

    因為

    依次類推,可得            ……………………………………………15分

    又存在,使,總有,故有,這與數(shù)列()的各項均為正整數(shù)矛盾!

    所以假設(shè)不成立,即對于任意,都有成立.           ………………………16分

     


    同步練習(xí)冊答案
    <rt id="7qze2"><del id="7qze2"><bdo id="7qze2"></bdo></del></rt>
    <rt id="7qze2"></rt>