故橢圓C的方程為+y2=1. --------5分 查看更多

 

題目列表(包括答案和解析)

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標(biāo)和此雙曲線E的方程.

查看答案和解析>>

已知橢圓C的方程為
x 2
4
+
y2
3
=1,過C的右焦點F的直線與C相交于A、B兩點,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共線,則直線AB的方程是( 。

查看答案和解析>>

精英家教網(wǎng)已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,點A、B分別為其左、右頂點,點F1、F2分別為其左、右焦點,以點A為圓心,AF1為半徑作圓A;以點B為圓心,OB為半徑作圓B;若直線l: y=-
3
3
x
被圓A和圓B截得的弦長之比為
15
6
;
(1)求橢圓C的離心率;
(2)己知a=7,問是否存在點P,使得過P點有無數(shù)條直線被圓A和圓B截得的弦長之比為
3
4
;若存在,請求出所有的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(2012•衡陽模擬)已知橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0),離心率e=
2
2
,上焦點到直線y=
a2
c
的距離為
2
2
,直線l與y軸交于一點P(0,m),與橢圓C交于相異兩點A,B且
AP
=t
PB

(1)求橢圓C的方程;
(2)若
OA
+t
OB
=4
OP
,求m的取值范圍•

查看答案和解析>>

給定橢圓C:
x2
a2
+
y2
b2
=1(>b>0),將圓心在原點O、半徑是
a2+b2
的圓稱為橢圓C的“準(zhǔn)圓”.已知橢圓C的方程為
x2
3
+y2=1.
(Ⅰ)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(Ⅱ)若點A是橢圓C的“準(zhǔn)圓”與X軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案